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Abstract

One of the most important question in statistics is parameter estimation.
Although minimizing the likelihood loss l is the de-facto general purpose
method, being the most efficient in the classical setting (achieving the
Cramer-Rao bound etc.), statistical methods are in the perpetual need
of being adapted and tailored to new data regime, which might necessi-
tate specific properties (robustness, expressivity, computational efficiency
etc.). In this essay, we consider the entropic optimal transport (EOT) loss
L(θ) and its associated estimator (EOTE). This method has been pop-
ularized quite recently, with the advent of new computational methods
in the field of optimal transport (Sinkhorn algorithm [PC19a] etc.). In
models admitting an additive noise structure (such as Gaussian Mixture
Models), it has been shown that both estimators recover the true parame-
ter (([Men+20], [RW18]), but with L being a better optimization objective
than l, avoiding bad local optima and with faster convergence. An ap-
pealing property of L, over the classical method, is that it seems to be
naturally more robust. This has been described empirically by [Men+20].
What is more, a semi-dual formulation of EOT loss can be understood
as an ‘adversarial’ estimator, thus improving confidence in the robustness
claims. In this essay, we work toward a theoretical framework to justify
these potential gains, backed with experimental results. In particular,
we lead a sensitivity analysis on model misspecification for mixture mod-
els, which is then applied to a simple Gaussian Mixture Model with two
symmetric component. Finally, we use semiparametric theory to obtain
influence functions for the semi-dual of the EOT loss, for possible further
study.
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Introduction
The tools of optimal transport have recently found many applications in areas such
as computer vision, statistics or machine learning, following breakthrough work of in
early 2010 [Cut13]. In particular, entropic regularization enables efficient computa-
tions with tractable convergence (see the thorough work of [PC19a]), as exemplified
by Sinkhorn’s algorithm, that can be easily implemented and adapted to statistical
procedures such as the EM algorithm [Men+20], for estimation purposes.

Aim of the paper

In this paper we focus on the associated Entropic Optimal Transport Estimator
(EOTE). This estimator essentially satisfies a minimal distance/projection type con-
dition. While the main focus in the literature has been on the computation side,
and on the properties of the associated distances defined between measures (such
as Wasserstein distances), the statistical properties of this estimator in itself, in the
asymtotic/non-asymptotic regime or in misspecified models, are neither well under-
stood nor sufficiently researched. The objective here is to close this gap, while leading
a comparison with the reference Maximum Likelihood Estimator (MLE). We will as-
sume familiarity with parametric estimation theory (else, see [Del]).

Outline and Contributions

Based on the recent work of [Men+20] and [RW18], it is proved that in some settings,
both estimators are comparable and recover the same optimal parameter. The models
introduced in each respective work are:

• (Q1) Model the observations Y by the joint probability Qθ of (X, Y ) where X
is a latent variable which distribution µX is known:

dQθ(x, y) = e−gθ(x,y)dµX(x)dν(y) = qθ(x, y)dµX(x)dν(y).

Then it is proved that the population/empirical EOT loss always dominates the
log-likelihood loss. Moreover, when the model is well-specified, both losses are
minimized in the population regime at the true parameter: l(θ∗) = L(θ∗).

• (Q2) Model the observations Y as follows:

Y = Xθ + Zσ2 ,

where Zσ2 ∼ N (0, σ2) is a Gaussian noise, and Xθ ∼ Pθ ∈ P where P is a
family of measures closed under domination. Then the associated MLE and
EOTE agree even in the finite regime.

In order to obtain an effective method to compute these estimations, we will also
work to adapt the Expectation-Maximization (EM) algorithm to its EOT counter-
part, thanks to the Sinkhorn algorithm. Further, as presented in [Men+20], the
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Sinkhorn EM further shows improvements over the instabilities of the classical EM
algorithm, requiring both less iterations to converge, and less random initializations
before getting a satisfying result. In this work, the EOT loss also shows better theo-
retical properties for convergence, reinforcing the belief it is worth studying.

Our original contribution is mainly the sensitivity analysis on model mis-
specification, where we conclude that the EOTE should indeed be more
robust. This lies outside of the setting of (Q1) and (Q2), as we seek clear distinct
behaviours between both estimators, favoring one to the other. An alternative rep-
resentation of the EOT loss, the semi-dual formulation, is a path to explaining this
robustness claims, especially in the context of model misspecification. As introduced
by [Men], it consists in:

θEOT = argmax
θ

min
f

KL(αθ ∥ αθ,f ) + EY∼β(logEZ∼N (0,1)αθ,f (Y + Z)),

where Y is the noisy observed variable, X ∼ αθ is the latent variable we model, and
αθ,f is its f-tilting. Indeed, this semi-dual formulation shows, among other things,
that the loss is able to account for models outside of the parametric family, thanks to
the tilting (in the case of a GMM, this allows fixed mixture weights to vary). Thus
we will lead our study in the simplest of such setting:

Y = X + Z = αN (θ, 1) + (1− α)N (−θ, 1).

We will enforce misspecification in the mixing parameter: αtrue = α + ε. Using an
approach introduced by [Gus96], we will devise formulas to approximate and compare
sensitivity of both the MLE and the EOTE, and conclude that the EOTE should
indeed be more robust. Simulations on synthetic data confirm the derived
formula for the sensitivity of the maximum likelihood estimator is true.

Shortfalls

Our approach suffers from a few shortfalls. First, theoretically, as this subject of
research is still in its infancy. We did not have the time to fully lead a statistical
analysis of this estimator in the context of mixture models (consistency, regularity,
asymptotical linearity...), with misspecification or not. Moreover, concerning the
semi-dual approach, we had to use a further simplification letting us consider the
usual parametric estimation theory, instead of going through semiparametrics. We
will, however, give directions for future steps and, in particular, a theorem to obtain
the influence function for a semi-parametric m-estimator, which applies to the semi-
dual representation of EOT.

Second, on the practical viewpoint, even if the obtained formulas in the population
regime are verified to be accurate, in practice the simulations using the different
EM algorithms on synthetic data show no real difference between the MLE and the
EOTE. It is possible that the simplifications needed to use parametric methods for
the semi-dual formulation implicitly assume statistical properties, like infinite data,
that give a virtual, unobtainable edge to the EOTE.
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1 Parametric Estimation
Parametric statistical models at hand will be described by families of distributions
identified by subsets of Rq: PΘ = {Pθ, θ ∈ Θ ⊂ Rq}.

When the true distribution of the data lies in the parametric family, we say that the
model is well specified. Otherwise it is misspecified.

Let g be a function from Θ to Rd. We denote by ĝ an estimator for g(θ). When
g = Id, we will just write θ̂ := ĝ. When the statistical model describes n data points
we may write ĝn instead of ĝ.

1.1 Maximum-Likelihood Estimator (MLE)

Suppose the parametric family is dominated by a measure ν, and write pθ the densities
of the distributions in the family at hand. Let lθ(Z1, · · · , Zn) =

∑n
i=1 log pθ(Zi). Then

the MLE is an M-estimator associated with the above objective function. Thus

θ̂MLE
n = argmax

θ
lθ. (1)

It is well known that when the model is well-specified, this estimator θ̂n is consistent,
regular, asymptotically normal, and, when unbiased, reaches Cramer-Rao bound (ef-
ficient in a reasonable class of estimators). It has thus always been the preferred
method for parameter estimation. Moreover, it admits the interesting property that
it minimizes the KL divergence (a well-known notion of ’distance’ between measures)
between the true distribution of the data P and the distributions in the model:

θMLE = argmin
θ

KL(P ∥ Pθ) = argmin
θ

∫
X
log

(
dP

dPθ

(x)

)
dP (x).

This seems reassuring in terms of the robustness of the MLE, for instance in the case
of model misspecification, where it is also known that the MLE holds pretty well as
an estimator, conserving its nicest statistical properties such as linearity etc [Whi82].
However, the KL divergence is a rather bad notion of distance. First it is not even
a metric, as it is not symmetric. But more importantly, it also also fails on natural
examples; suffices to find two "close" measures such that one does not dominate the
other:

KL(δ−ε ∥ δε) = +∞.

This is rather unfortunate, and one could wonder if other approaches could resolve
such a failure. To our greatest delight, this happens to be the case, and one should
immediately think of the theory of optimal transport: we know how to metrize spaces
of measures.
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1.2 Entropic Optimal Transport Estimator (EOTE)

The theory of optimal transport comes to our rescue. It is strongly recommended to
read Appendix B if one is not familiar with it, and one may also begin with Appendix
A for some probabilistic tools. For now, take X ,Y measurable spaces, denote by P(X )
the set of probabilities on one such space, denote by ΠX : P(X × Y) → P(X ) the
projection operator, and write M(µ, ν) = {γ ∈ P(X × Y) | ΠXγ = µ, ΠY γ = ν}.
Introduce the Wasserstein metric distance between measure:

Wp(µ, ν) = inf
γ∈M(µ,ν)

(∫
X×Y

∥x− y∥pdγ(x, y)
)1/p

. (2)

One should read the appendix to be convinced that this, indeed, defines a distance.
Notice how, now, Wp(δ−ε, δε) = 2ε. One could not have hoped better. This leaves us
with an immediate estimation method; θ̂OT = argminθ Wp(P, Pθ)
Unfortunately, inspecting the discrete formulation of this estimation method yields a
sad conclusion:

θ̂n = argmin
θ

Wp(P̂ , P̂θ) = argmin
θ

inf
P1=Ĝ,PT 1=F̂θ

∑
1≤i,j≤n

(xi − yj)
pPij.

This is a linear program, and best known approaches (network simplex, O(n3 log n)
[BLO]) are way too slow. The solution is to add an entropic term to the transport
problem (entropic regularization):

Wp,σ2(µ, ν) = inf
ΠXγ=µ,ΠY γ=ν

∫
X×Y

∥x− y∥pdγ(x, y) + σ2KL(γ ∥ µ ⊗ ν), (3)

and to then solve the estimation problem:

θ̂EOT = argmin
θ

Wp,σ2(P, Pθ). (4)

Entropy acts as a smoothing, and enables very fast optimization methods (Sinkhorn,
see Appendix B). It also smooths the optimal transport plan γσ2 :

Figure 1: EOT coupling between two Gaussians [Jan+20]

Remark how γσ2
ε→∞−−−→ µ ⊗ ν. Indeed, this does not define a distance anymore, and

argminν Wε(µ, ν) ̸= µ (we can still recover a distance as explained in [PC19a]). This
is actually not an issue. The objective is not solely to benefit from computations
speed up, while minimizing approximation error by letting ε → 0. The problem is
also of its own interest; it is entropic regularization that provides a bridge with MLE,
and good statistical properties, such as robustness.
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2 Comparison between MLE and EOT
Let us introduce this well known lemma, that will be of great use:

Lemma 2.1. (Donsker and Varadhan’s variational formula) Let h be a continuous
L1 function. Then for distributions P and Q:

logEP (exp(h)) = sup
Q≪P

EQ(h)−KL(Q ∥ P ),

equality iff dQ = exp(h)
EP (exp(h))

dP .

We now present the ground breaking work of both [Men+20] and [RW18], showing
the intricate relationship between MLE and EOT.

2.1 (Q1) (X, Y ) ∼ Qθ, Population Regime

As introduced by [Men+20]. Model the observations Y by the joint probability (X, Y )
where X is a latent variable. Suppose the distribution of the latent variable is already
known; for instance, in a GMM, this means we already know the mixture weight. We
are in the following parametric estimation setting:

dQθ(x, y) = e−gθ(x,y)dµX(x)dν(y) = qθ(x, y)dµX(x)dν(y). (5)

The distribution of X is known to be µX , ν is a suitable base measure for values of
Y , and we require qθ(x, y)dν(y) to be a probability measure on values of Y (which is
equivalent as stating that ΠXQ

θ = µX).

This covers many settings. If we have a mixture model, we can have X ∼ 1
n

∑
δxi

and
gθ ∝ (y − x)TΣ−1

x (y − x). Then Y |X ∼ N (θX ,ΣX), with ν is the Lebesgue measure.
Actually, this parametrization with gθ is flexible enough to model all the parameters
of the GMM (we can have Y |X ∼ N (µθ(X), σθ(X)) instead of Y |X ∼ N (X, σ2)).
Thus indeed µX is only a guess on mixing weights.

Definition 1. Define the population regime/empirical log-likelihood l, l̂ to be:

l(θ) = −EY∼Qθ∗
Y
log qθ(Y ), l̂(θ) = −EY∼UY

log qθ(Y ),

where UY = 1
n

∑
δyi is the empirical distribution. Likewise, define the EOT-loss:

L(θ) = Wθ(µX , Q
θ∗

Y ), L̂(θ) = Wθ(µX , UY ).
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Theorem 2.2. (Equivalence in Q1) In the setting of Q1, the EOT loss always dom-
inates the log-likelihood loss:

l(θ) ≤ L(θ) l̂(θ) ≤ L̂(θ)

Moreover, whenever the model is well-specified, with the true distribution being iden-
tified by θ∗, both population loss are minimized at θ∗:

L(θ∗) = l(θ∗).

Thus the two associated estimator consistently recover the same parameter in the
population regime. As a side note, the results obtained here are also of interest for
the computation of the EM algorithm, as described in Appendix D.2.

Proof. Log-Likelihood Loss l(θ), l̂(θ)

By writing qθ(x, y) = qθ(x|y)qθ(y), write

Fy(µ, θ) = log qθ(y)−KL(µ ∥ Qθ(·|y)),

where Qθ(·|y) is a kernel of conditional probabilities induced by any joint probability
over (X, Y ) where we only require Y ∼ µY . Fy is alike the F-Functional introduced in
Appendix D.2. The following work actually also proves the relations between the F-
Functional and the EM algorithms. Anyway, by taking P a joint probability between
(X, Y ) we can confidently write

log qθ(Y ) = max
P∼(X,Y )

FY (P (·, Y ), θ) = FY (Q
θ(·|Y ), θ).

Having replaced µ by P a joint probability on (X, Y ) with Y ∼ µY , we are able to
switch supremum and integration;

EY∼µY
log qθ(Y ) = max

P∼(X,Y )
EY∼µY

FY (P (·|Y ), θ).

Now when µY = Qθ∗
Y or µY = 1

n

∑
δyi we recover a formula for either the log-likelihood

in the population regime l(θ) or the empirical one l̂(θ).

EOT Loss L(θ), L̂(θ)

This time see that:

sup
µ

Fy(µ, θ) = inf
µ
gθ(x, y) +KL(µ ∥ µX).

In the same way just introduce a joint distribution P such that Y ∼ µY and now:

EY FY (P (·|Y ), θ) = −EX,Y gθ(X, Y )−KL(P (·|Y ) ∥ µX).
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Thus

− sup
P

EY FY (P (·|Y ), θ) ≤ − sup
P∈M(µX ,µY )

EY FY (P (·|Y ), θ),

− sup
P

EY FY (P (·|Y ), θ) ≤ inf
P∈M(µX ,µY )

EX,Y gθ(X, Y ) +KL(P (·|Y ) ∥ µX),

i.e

−EY∼µY
log qθ(Y ) ≤ Wθ(µX , µY ).

We immediately get the following inequalities for the relevant distributions µY :

l(θ) ≤ L(θ) l̂(θ) ≤ L̂(θ)

Moreover, when (X, Y ) ∼ Qθ∗ , l(θ∗) is attained at P = Qθ∗ ∈ M(µX , Q
θ∗
Y ). So

L(θ∗) = − sup
P∈M(µX ,Qθ∗

Y )

EY FY (P (·|Y ), θ∗) ≤ −EY∼Qθ∗
Y
FY (Q

θ∗(·|Y ), θ∗) = l(θ∗),

and in fact:

L(θ∗) = l(θ∗).

2.2 (Q2) Closed Under Domination

As introduced by [RW18], the setting is different. Suppose we work on Euclidean
space: X ,Y ,Z = Rd. Model our observations Y the following way:

Y = X + Zc, (6)

where X is a random variable whose distribution belongs to a (non necessarily para-
metric) family of measures P closed under domination (Definition 2), and Zc is a noise
which distribution admits c as a density (e.g c(x) = 1√

2πσ2
e−∥x∥2/2σ2 for a Gaussian

noise with variance σ2). Here, the maximum likelihood method is directly used on
the family of distribution modeling X rather than (Y |X). We must know the noise
distribution.

Definition 2. (Closed under domination) A family of measures P is said to be closed
under domination if for any measure Q, Q ≪ P for some P ∈ P implies Q ∈ P.

This accommodates for many examples; the class of all measures dominated by the
Lebesgue measure, the class of discrete measures, the class of measure with finite
support or with at most k points in its support (ex: finite GMM). However, this is
still pretty restrictive. Consider for instance a very usual parametric family one might
consider: {N (µ, σ2)}µ,σ∈R. It is definitely not closed under domination.
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The main theorem is the following:

Theorem 2.3. (EOT is Noise Deconvolution [RW18]) Consider the previous model
described in Equation 6. Let the distribution of X lie in a family P closed under
domination. Then the MLE P̂ satisfies

P̂ = argmin
P∈P

Wc(P,
1

n

n∑
i=1

δyi) = argmax
P∈P

n∑
i=1

log c ∗ dP (yi), (7)

where ∗ denotes convolution. Thus EOTE and MLE agree, even in the finite data
regime.

Proof. Write lP := log c ∗ dP . Applying the convolution to a data point yields

lP (yi) = log

∫
X
c(x− yi)dP (x).

The lemma 2.1 implies that

lP (yi) = min
Qi

EX∼Qi
c(X − yi) +KL(Qi ∥ P )

By definition the MLE is

P̂ = argmin
P∈P

min
Q1,··· ,Qn

1

n

n∑
i=1

EX∼Qi
c(X − yi) +KL(Qi ∥ P ).

Define U to be 1
n

∑n
i=1 δyi the empirical distribution of the observations. Remark that

any joint probability measure γ on X × Y satisfying γ ∈ M(U) (i.e ΠY γ = U) can
be uniquely written (easily provable by properties of Dirac measures)

y =
1

n

n∑
i=1

Qi ⊗ δyi .

Use this bijection to rewrite our MLE as

P̂ = argmin
P∈P

min
γ∈M(U)

E(X,Y )∼γc(X − Y ) +KL(γ ∥ P ⊗ U).

But remark that KL(γ ∥ P ⊗ U) = KL(γ ∥ ΠXγ ⊗ U) + KL(ΠXγ ∥ P ), since of
course KL(ΠY γ ∥ U) = 0. Thus we rewrite the MLE equation again as

P̂ = argmin
P∈P

min
γ∈M(U)

E(X,Y )∼γc(X − Y ) +KL(γ ∥ ΠXγ ⊗ U) +KL(ΠXγ ∥ P )

= argmin
P∈P

V (P ).

Now, for any P , consider γP the coupling that achieves the minimum in W (P,U)
(existence and uniqueness proved in Appendix B). Then, KL(ΠXγ ∥ P ) = 0 so
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V (P ) ≤ E(X,Y )∼γc(X − Y ) +KL(γ ∥ ΠXγ ⊗ U) = Wc(P,U).

We now show that we have the reverse equality for the respective minimum of these
values, thus showing equality between MLE and EOTE. To this end, observe that
V (P ) < +∞ implies ΠXγ ≪ P , for the divergence not to be infinite. Thus there
must be ΠXγ ∈ P by our closed under domination assumption. This simple fact will
lead to the conclusion:

min
P∈P

V (P ) = min
P∈P

min
γ∈M(U),ΠXγ∈P

E(X,Y )∼γc(X − Y ) +KL(γ ∥ ΠXγ ⊗ U) +KL(ΠXγ ∥ P )

≥ min
P∈P

min
γ∈M(U),ΠXγ∈P

E(X,Y )∼γc(X − Y ) +KL(γ ∥ ΠXγ ⊗ U)

≥ min
P∈P

min
γ∈M(P,U)

E(X,Y )∼γc(X − Y ) +KL(γ ∥ ΠXγ ⊗ U)

≥ min
P∈P

Wc(P,U).

This ends the proof.

2.3 Discussion

Let us recapitulate our findings.

(Q1) is a more general setting that encompasses usual mixture models up to known
fixed mixing weights. Guarantees of equivalence only exist in population regime
and in well-specified models. Moreover, empirical study [Men+20] shows that EOT
loss behaves better than MLE loss: sharper hessian at true parameter (∇2l(θ∗) ⪯
∇2L(θ∗)), fewer bad local optima, and faster convergence using EM algorithm.

(Q2) is somewhat restrictive, even if it works in finite sample regime. It only models
distribution of X rather than (X, Y ). Noise σ2 must be known beforehand to calibrate
Wσ2 the EOT loss. Plus, the closed under domination assumption is very restrictive;
it is not satisfied by {N (θ, σ2)}θ,σ∈R2 for instance.

Even if these results are interesting by themselves, it is hard to improve them further
or tie them together. Rather, we will use them as a proxy as to know where not to
look. Now that we are set to begin our robustness study, we want to investigate a
data regime with a model such as the resulting estimators show different behaviours.
In our case, we would like to focus on the robustness property of the EOTE, and will
look at model misspecification, in a non closed under domination family.
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3 Robustness Considerations
As thoroughly explained in Appendix C (Theorem C.5), and first pointed out by
[Men], the EOT loss admits the following semi-dual formulation:

θEOT = argmax
θ

min
f

KL(αθ ∥ αθ,f ) + EY∼β(logL ∗ αθ,f (Y )), (8)

where dαθ,f = ef

Eαθ
(ef (X))

dαθ is the f -tilting, L is such that it admits e−c(x) as a
density against the Lebesgue measure (this is alike the noise descirbed in the previous
section), where we assume that the cost c verifies c(x, y) = c(x − y), and ∗ denotes
the convolution operator. There are some immediate remarks:

• (Adversarial Interpretation) The method tries to make the data look implausi-
ble, while tilting not too far away from a distribution in the model.

• (Variance Regularization) This can be thought as variance regularization. Ap-
proximate log(x) ≈ x− x2

2
. Then

KL(αθ ∥ αθ,f ) = logEθe
f −

∫
log

(
ef(x)dαθ(x)

)
≈ Eθe

f − 1

2
Eθ(e

f )2 − Eθe
f +

1

2
Eθ(e

2f )

≈ 1

2
V arθ(e

f ).

• (Robustness) Tilting suggests to study model misspecification.

• (Semi parametric estimation) We should appeal to the theory of semiparamet-
rics since the optimization is made on (θ, f), where f can be interpreted as a
nuisance parameter, and θ the parameter of interest. However, here it does not
work the usual way: the estimation equation involves computation of a sup inf
instead of a sup sup.

As we have stated all throughout, our strategy to prove these very serious claims
of robustness is to work on the sensitivity on model misspecification of both MLE
and EOTE. Since it is easier, we will be working on parametric estimation instead
of semiparametrics, by considering that the infimum over the dual potential f is
described by a function of θ. As we will see, this is enough to obtain sensible results.
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4 Sensitivity Analysis: Model Misspecification

4.1 Simplified Setting: Symmetric GMM with Two Compo-
nents

We can focus on a mixture of two Gaussians and see how the adversarial approach
compares to the MLE alternative. Suppose

X ∼ αθ = α∗δθ∗ + (1− α∗)δ−θ∗ ,

and c(x, y) = ∥x− y∥2/2σ2 so that Z ∼ pz ∝ e−c(x) and

Y = X + Z ∼ α∗N (θ∗, σ2) + (1− α∗)N (−θ∗, σ2).

The question is what happens in model misspecification, where

X ∼ αN (θ∗, σ2) + (1− α)N (−θ∗, σ2),

and α∗ = α + ε.

There are many questions to ask. What happens in finite sample regime, inference,
out of sample performance etc. On our part, we will focus on a sensitivity analysis on
model misspecification, in the population regime, i.e study the value of θ̂EOT/MLE(ε)

or θ̂′EOT/MLE(0). As suggested by the semi-dual formulation, the EOT approach is
designed to be the most robust.

4.2 Sensitivity Analysis on M-Estimators of Mixture Models

We follow the strategy presented in [Gus96].

4.2.1 Setting and Notations

We look at the following mixture model.

• We observe a variable Y , modeled by specifying distributions of Y |X and X,
with X the unobservable parameter (mixing distribution).

• Parametrization θ = (θ1, θ2) such that Y |X ∼ Fθ1,X and Z ∼ Gθ2 .

Here we investigate what happens when our model correctly specifies the conditional
distribution Y |X but not the mixing distribution of X. Specifically we look at what
happens when the true distribution is ’ε-away’ from a member of the parametric
family. [CGT17] introduces interesting work regarding what we could use as a distance
to characterize this ’ε-away’, but here we will simply work with what [Gus96] calls
an ’ε-contamination’ (which is the same idea for sensitivity analysis introduced by
influence functions, in the usual context of robust estimation):
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Definition 3. (ε-contamination) Gε is an ε contamination of Gθ∗ if there exists a
(necessarily unique) distribution G̃ s.t

Gε = (1− ε)Gθ∗ + εG̃.

We will then assume that

X ∼ Gε

G̃ can be any distribution s.t the estimation method still finds Fθ∗1
as the optimal

solution. Typically it is required that G̃ ∈ Λ(Gθ∗), which is the class of distributions
sharing the same first two moments as Gθ∗ [Gus96]. But in our case we will see that
θ1 really belongs to a singleton, so there are no such considerations. [dit] uses a Dirac
as G̃ and ties sensitivity analysis of leave one out with first order approximation of
bias for log likelihood estimation; the analysis is extremely similar even though it
does not cover the case of mixture models, and is, as we will point out, a special case
of the method here.

Notations Denote the perturbation distribution by G̃. Denote the m-estimator
by m. Let the (conditional) m-score functions be s(θ, x) = E(∂m

∂θ
(Y, θ) |X = x) =∫

Y
∂m
∂θ

(y, θ)dFθ∗,x(y). Write the information matrix Im(θ) = E(− ∂2m
∂θθT

(Y, θ)). The
m-estimation procedure computes

argmax
θ

E(m(Y, θ)). (9)

Theorem 4.1. (Sensitivity of parametric m-estimators, mixture models) Keep previ-
ous notations and setting. Suppose the information matrix Im is everywhere invertible.
Then, for all θ ∈ Θ, there exists a neighbourhood U of 0 and V of θ s.t there exists a
smooth function θ : U → R verifying

θ(ε) = argmax
θ

E(m(Y, θ)).

Moreover we can compute its derivative at zero to be exactly

θ′(0) = I−1
m (θ∗)

∫
s(θ∗, z)dG̃(x), (10)

where θ∗ = θ(0) is the parameter identifying truth, recovered without perturbation.

Proof. For an ’ε-contamination’ of the mixing distribution, the estimation θε must
verify

∂

∂θ
E (m(Y, θ)) =

∂

∂θ
EGεEFθ∗,X (m(Y, θ)|X)

∣∣∣
θε
= EGεs(θ,X)

∣∣∣
θε
= 0.

Denote by g : (ε, θ) 7→ EGεs(θ,X)
∣∣∣
θ

the above function, and by θ∗ the unique solution

at ε = 0 of the above problem, s.t g(0, θ∗) = 0. This is well defined since the problem
is correctly specified in the usual statistical framework. See that

∂g

∂θ
(0, θ∗) = E

(
∂2m

∂θθT
(Y, θ)

)
= −Im(θ

∗),
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which we suppose to be invertible. Thus the implicit function theorem assures us
that for ε in a small neighbourhood U of zero we have a differentiable function θ such
that

g(ε, θ(ε)) = 0.

Now we will find a formula for θ′(0), which is our desired approximation result (im-
possible to come up with an exact formula since we we are manipulating unknown
distributions). Compute

∂g

∂ε
(ε, θ) =

∂

∂ε
(1− ε)

∫
s(θ(ε), x)dGθ∗(x) + ϵ

∫
s(θ(ε), x)dG̃(x)

=
∂

∂ε
(1− ε)A(ε) + εB(ε)

= −A(ε) + (1− ε)A′(ε) +B(ε) + εB′(ε).

See how
A′(ε) =

∫
∂m

∂θθT
(θ(ε), x)θ′(ε)dGθ∗(x) = −Im(θ(ε))θ

′(ε).

Moreover, A(0) = g(0, θ∗) = 0 so at ε = 0:

∂g

∂ε
(ε, θ) = A′(0) +B(0)− A(0)

= −Im(θ
∗)θ′(0) +

∫
s(θ∗, x)dG̃(x)

= 0.

Thus finally

θ′(0) = I−1
m (θ∗)

∫
s(θ∗, x)dG̃(x).

Corollary 4.1.1. Remark that when we are not working with a mixture model, such
as in [dit], we recover the (very) famous formula for the influence function of the
m-estimator by simply considering G̃ = δx; then

θ′x(0) = IF (θ̂, Gθ∗ , δx) = I−1
m (θ∗)sθ(θ

∗, x). (11)

We can easily deduce the asymptotic variance of the estimator for instance:

V ar(θ̂) = V ar(θ′X(0)) = I−1
m (θ∗)E(sθ(θ∗, X)sθ(θ

∗, X)T )I−1
m .
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4.2.2 Log-Likelihood

Now let us put this into practice with a Gaussian mixture, and the m-estimator being
the log-likelihood. Take

Fθ∗,x(y) = Fx(y) ∼ N (x, 1).

Here, see how the distribution of Y |X is not parametrized. Thus we do not require
that Gε ∈ Λ(Gθ) (i.e matching moments), since no matter the distribution of Z the
optimal parameter found by the model will (obviously) always result in F = Fθ∗,x.
Without loss of generality, suppose α∗ ≥ 1/2 and take

Gε′ = (α∗ + ε′)δθ∗ + (1− α∗ − ε′)δ−θ∗

Gθ∗ = α∗δθ∗ + (1− α∗)δ−θ∗

G̃ = δθ∗ ,

So that we have

Gε′ = (1− ε)Gθ∗ + εG̃, (12)

with ε′ = ε(1−α∗). In the case where α∗ < 1/2, simply exchange θ∗ by −θ∗, which is
a convenient symmetry. The likelihood function we are working with is thus defined
as follows

pθ(y) = d (α∗N (θ, 1) + (1− α∗)N (−θ, 1)) (y),

where, as we set out to study, the misspecification is on the mixing weight α∗; Y is
indeed distributed as

Y ∼ (α∗ + ε′)N (θ∗, 1) + (1− α∗ − ε′)N (−θ∗, 1),

which we will denote by Y ∼ (F,Gε). The m-estimator at hand is lθ = log pθ. Thus

θ(ε′) = argmax
θ

Elθ(Y ),

where we rather have θ a function of ε′ for the natural misspecification we introduced
in the Gaussian mixture (Equation 12). Since ∂θ

∂ϵ
= (1 − α∗) ∂θ

∂ϵ′
, we can directly

compute our final result using Theorem 4.1:

θ′(0) =
1

(1− α∗)
I−1(θ∗)s(θ∗, θ∗),

with I−1(θ∗) = −
(
E ∂2

∂θ2
lθ∗(Y )

)−1

and s(θ∗, θ∗) = E
(

∂
∂θ
lθ∗(Y )|Z = θ∗

)
:

θ′(0) =
−1

(1− α∗)

(
E

∂2

∂θ2
lθ∗(Y )

)−1 ∫
R

∂

∂θ
lθ∗(y)dN (θ∗, 1)(y). (13)
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Figure 2: Numerical simulations (left) vs theoretical formula (right)

Experimentation Results Confirms the truthfulness of the formula we have found.

4.2.3 Semi-dual EOTE as a Parametric M-Estimator

Remember we have the semiparametric semi-dual EOT estimator (Equation 8):

θEOT = argmax
θ

min
f

EG(θ, f, Y )

= argmax
θ

min
f

EY∼β (KL(αθ ∥ αθ,f ) + logL ∗ αθ,f (Y )) .

This is hard to manipulate, because of the nuisance parameter f . Instead of appealing
to semiparametrics, let us just consider that the infimum is reached on an almost
everywhere smooth function of θ, such that we obtain the following parametric m-
estimator:

θEOT = argmax
θ

Em(θ, f(θ), Y ).

Now, m : (y, θ) 7→ m(θ, f(θ, y)) is a perfectly good m-estimator to which we can apply
our sensitivity analysis. Consider the same mixture setting

Y |X ∼ N (X, 1), X ∼ Gθ∗ = α∗δθ∗ + (1− α∗)δ−θ∗ ,

and perturbation Gε
θ as before. Assuming Im invertible we directly obtain the sensi-

tivity formula from Theorem 4.1:

θ′(0) = (1− α∗)−1I−1
m (θ∗)

∫
s(θ∗, x)dG̃(x). (14)

Since G̃(x) = δθ∗ , we have θ′(0) = (1− α∗)−1I−1
m (θ∗)s(θ∗, θ∗). In other words

θ′(0) = (1− α∗)−1I−1
m (θ∗)E(s(θ∗, Y )|X = θ∗)

= (1− α∗)−1I−1
m (θ∗)

×
[
∂

∂θ
(KL(αθ ∥ αθ,f(θ))) +

∫
Y

(
∂

∂θ
log

∫
X
e−c(y−x)dαθ,f(θ)(x)

)
dN (θ∗, 1)(y)

]
.

Let us expand everything to get to some nice formulas. We will separate work between
the information matrix, and the score function (terms between brackets).
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Score function Write

αθ,f(θ) = h(θ)δθ∗ + (1− h(θ))δ−θ∗ , with h(θ) =
α∗ef(θ)

α∗ef(θ) + (1− α∗)ef(−θ)
.

Then

∂

∂θ
(KL(αθ ∥ αθ,f(θ))) =

∂

∂θ
α∗ log

α∗

h(θ)
+ (1− α∗) log

1− α∗

1− h(θ)

=
(α∗ − h(θ))h′(θ)

(h(θ)− 1)h(θ)
.

Further defining c to be x 7→ ∥x∥2 + log(
√
2π):[

· · ·
]
=

[
(α∗ − h(θ))h′(θ)

(h(θ)− 1)h(θ)

+

∫
Y

(
∂

∂θ
log h(θ)e−c(y−θ) + (1− h(θ))e−c(y+θ)

)
dN (θ∗, 1)(y)

]
=

[
(α∗ − h(θ))h′(θ)

(h(θ)− 1)h(θ)

+

∫
Y

(
h′(θ)(e−c(y−θ) − e−c(y+θ))

h(θ)e−c(y−θ) + (1− h(θ))e−c(y+θ)

)
dN (θ∗, 1)(y)

+

∫
Y

(
−2h(θ)((y − θ)e−c(y−θ) − (y + θ)e−c(y+θ))

h(θ)e−c(y−θ) + (1− h(θ))e−c(y+θ)

)
dN (θ∗, 1)(y)

+

∫
Y

(
−2(y + θ)e−c(y+θ)

h(θ)e−c(y−θ) + (1− h(θ))e−c(y+θ)

)
dN (θ∗, 1)(y)

]
.

Information matrix We simply compute

Im(θ) =
∂2

∂θ2
(KL(αθ ∥ αθ,f(θ)))

+

∫
Y

(
∂2

∂θ2
log

(
h(θ)e−c(y−θ) + (1− h(θ))e−c(y+θ)

))
dGθ∗(y),

where
∂2

∂θ2
(KL(αθ ∥ αθ,f(θ))) =

(h(θ)− α∗)(h(θ)− 1)h′(θ)2 + (h(θ)− α)h(θ)h′(θ)2 + [(α− h(θ))h′′(θ)− h′(θ)2](h(θ)− 1)h(θ)

(h(θ)− 1)2h(θ)2
,
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and
∂2

∂θ2
log

(
h(θ)e−c(y−θ) + (1− h(θ))e−c(y+θ)

)
=

−
(
((θ − y)h(θ)− h′(θ)) e−c(y+θ) + (− (θ + y) (h(θ)− 1) + h′(θ)) e−c(y−θ)

)
×

(
(θ − y) (h(θ)− 1) e−c(y−θ) − (θ + y)h(θ)e−c(y+θ) + e−c(y−θ)h′(θ)− e−c(y+θ)h′(θ)

)
+
(
(h(θ)− 1) e−c(y−θ) − h(θ)e−c(y+θ)

)
×

(
− (θ − y) ((θ + y) (h(θ)− 1)− h′(θ)) e−c(y−θ)

+ (θ + y) ((θ − y)h(θ)− h′(θ)) e−c(y+θ)

+ ((θ − y)h′(θ) + h(θ)− h′′(θ)) e−c(y+θ)

+ (− (θ + y)h′(θ)− h(θ) + h′′(θ)+) e−c(y−θ)

)
× 1

((h(θ)− 1) e−c(y−θ) − h(θ)e−c(y+θ))
2 ,

which entirely determines the value of θ′(0). However, we have not been able to
determine analytical solutions to h(θ). Many various techniques were tried (hand
calculation, symbolical computations), never with success. Thus, in the following,
computing the formula will involve numerical integration.

Experimentation Results Confirm the truthfulness of the formula we have found.

Figure 3: Numerical simulations (left) vs theoretical formula (right)

4.3 Comparison Between EOT and MLE

Compare θ′EOT (0), θ
′
MLE(0) for different (α, θ), on the misspecified model

αN (θ∗, 1) + (1− α)N (−θ∗, 1),

with the true data being distributed with the mixture weights specified by α∗ = α+ε.
In a general fashion, we always have:

θ′EOT (0) ≤ θ′MLE(0), (15)

which theoretically proves that the EOT method is indeed more robust in this setting.
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Figure 4: α∗ = 0.55

Figure 5: α∗ = 0.65

Figure 6: α∗ = 0.75
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4.4 Simulations with Classical EM and Sinkhorn EM

Please refer to Appendix D to understand how the EM algorithms are implemented,
and the update formulas for a mixture of symmetric Gaussians.

Because of numerical imprecision, we do not plot the estimated derivative of the
estimator, but simply the estimator resulting from the ε-tilting, and we denote it by
θε. By ’true’, on the plots, we mean the value of θ(ε) found by each misspecified
model, when using scipy optimization procedures to get the exact results on our
Gaussian mixture models. By ’EM’ we mean running the Classical EM algorithm
(’true’ thus means the true curve for log-likelihood misspecification), and idem with
Sinkhorn EM (see D for algorithm).

In order to have sensible results, for each EM simulation we choose the best esti-
mation out of 5 runs, each randomly initialized close to the true computed value of
θMLE/EOT (ε), with θinit = (1 + 0.2random(−1, 1))θMLE/EOT (ε).

We use N = 3000 points for each simulations, 10 EM iterations as prescribed in
[XHM16] (and verified empirically, there is no need for more with 2-GMM), and
compute a total of M = 100 estimation per (α, θ) couple with different randomly
generated data. We plot the true and simulated curves for 20 equally spaced θ∗

between 0.05 and 0.45 and for three different alphas. Each data point of the EM
or Sinkhorn algorithms include a vertical error bar that indicate mean(θ̂n) ± std(θ̂n)√

M
.

Misspecification is ε = 0.05, chosen so that θε − θ∗ > std(θ̂n).

Figure 7: α∗ = 0.65

We can see that the MLE theoretical curve coincides with the simulation, which is
reassuring. However, Sinkhorn EM produces approximately the same values as the
EM algorithm. This has been consistently the case during many hours of different
simulations and hyper-parameters selection. This odd behaviour needs further study.
It is possible that the simplifications needed to use parametric methods for the semi-
dual formulation implicitly assume statistical properties, like infinite data, that give a
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virtual, unobtainable edge to the EOTE. It is also possible that numerical subtleties
in the implementation explain such a behaviour, but it is yet to be fully elucidated.
Anyway, this is encouraging, and the MLE is well fitted.

Figure 8: α∗ = 0.55

Figure 9: α∗ = 0.75
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5 Semiparametrics for Semi-Dual EOT
Remember the Equation 8 for the semi-dual EOT:

θEOT = argmax
θ

min
f

KL(αθ ∥ αθ,f ) + EY∼β(logL ∗ αθ,f (Y ))

Working directly with this formulation is harder. Here, f can be interpreted as
a nuisance parameter, embedded in a space of possibly infinite dimension, and θ
is the parameter of interest. One can take a look at [Tsi07] and [Kos07] for a good
introduction to the theory of semiparametric estimators. However, here it does not go
the usual way: the estimation equation involves the computation of a sup inf instead
of a sup sup. But this is not necessarily an obstacle. As a direction for further result,
we propose the following (applicable) theorem, presented in [Kos07]. Refer to the
latter for full necessary hypothesis.

5.1 A Formula for Further Studies

Theorem 5.1. (Influence function for semiparametric M-Estimator [Kos07]) Write
m(θ, f) the semiparametric estimator. Use subscripts to denote derivative, bracket [A]
for Frechet derivative along A in nuisance space. Suppose (θ̂n, f̂n) satisfy Equation
21.6 and conditions A1-A4 hold. Then

√
n(θ̂n − θ0) = −

√
nE (m11(θ0f0)−m21(θ0, f0)[A

∗])−1

× En(m1(θ0, f0)−m2(θ0, f0)[A
∗]) + oP (1)

where A∗ verifies a projection criterion accommodating for the minf in the semi-dual
equation 8. Thus the estimator is asymptotically linear with mean 0, and we easily
deduce variance etc. This could also be an entry point to compare with the parametric
results, and study misspecification.
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A Notations and Preliminaries
X ,Y ,Z will be denoting some arbitrary measurable space with the convenient topol-
ogy (Polish space: separable topological space which can be metrized using a distance
which makes it a complete metric space).

The set of measures on each space will be denoted P(X ), we’ll usually write µ, ν, η ∈
P(X ). The letter P in P ∈ P(X ) will specifically designate a probability measure.

Denote by X ∼ G the fact that G is the distribution of the random variable X.
With f a measurable function, EG(f(X)) =

∫
X f(x)dG(x) denotes the expectation

of the random variable f(X) with respect to the distribution G (we may mix the
distribution with its associated probability measure). We may also unequivocally
write EX∼G, or EX∼g if G admits a density g against another measure (usually the
Lebesgue measure).

Types of convergence; µn ⇀ µ denotes convergence in law, µn
P−→ µ convergence in

probability, and µn
a.s−→ µ a.s convergence.

Let γ ∈ P(X × Y) be a joint probability measure. Denote by ΠXγ ∈ P(X ) its
projection on the first variable. Likewise, define ΠY γ ∈ P(Y).

Define

M(µ, ν) := {γ ∈ P(X×Y) : ΠXγ = µ,ΠY γ = ν}, M(ν) := {γ ∈ X × Y : ΠY γ = ν}.

The pushforward of measure µ by a measurable function T is T#µ = ν and is such
that ∀B measurable, ν(B) = µ(T−1(B)). When µ, ν absolutely continuous against
the Lebesgue measure in Euclidean space, we have µ(x) = ν(T (x))| det(T ′(x))|.

We will sometimes talk of disintegration of measures, in particular in relation to
conditional expectation.

Let f be a continuous bounded function. An f-tilting parametrizes an exponential
tilting, that is, a change of measure defined by the random variable L = ef(X)

EX(ef(X))
.

Let µ, ν ∈ P(X ). We say that µ ≪ ν (ν dominate µ) whenever for all measurable
sets B ⊂ X , ν(B) = 0 ⇒ µ(B) = 0. Denote by KL the Kullback-Leiber divergence:

KL(µ ∥ ν) =

{
Eµ(log(

dµ
dν
)) if µ ≪ ν

+∞ else
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B Theory of Optimal Transport
The goal of this section is to introduce the relevant tools to rightfully construct our
alternative estimator. We will burn through the usual presentation and history of
optimal transport to get to our means, while trying to stay pedagogic. This is why
we introduce Monge’s formulation as we feel this is an easier way into understanding
the motivation of the theory. We will also focus on Sinkhorn algorithm, which will
give a procedure to actually compute the EOT estimator.

B.1 Optimal Transport

Most of the content here is inspired by [PC19b], [PC19a], [Tho].

B.1.1 Monge Formulation

The initial setting for optimal transport is the following. Imagine you are given a
starting measure µ and a final measure ν, such that you wish to transport one to the
other. For instance we could consider that µ models the distribution in space of a
pile of sand, and ν models the distribution in space of a corresponding storage space
such that their volume is the same. We also specify a cost function c such that c(x, y)
models the cost of transporting x to y. Then the optimal transport problem consists
in finding the best transport plan such that the total cost is minimized. This very
simple example is also why this is sometimes referred as the earth mover’s problem.

Let us define the problem formally.

Definition 4. (Monge Formulation for Optimal Transport) Given µ ∈ P(X ) and
ν ∈ P(Y), the Monge formulation for optimal transport consists in determining the
following:

M(µ, ν) = inf
measurable T

∫
X
c(x, T (x))dµ(x), T#µ = ν. (16)

Example B.1. (Matching Problem) An interesting example is the matching prob-
lem. Suppose µ is an empirical measure admitting n uniformly weighted points in its
support; µ ∝

∑
i δxi

. The mapping T must then be one-one; ν =
∑

i δyi, and T is
described by a permutation σ ∈ Sn. The cost can be described by C ∈ Mn,n(R) where
Cij is the cost of transporting an element of mass from point i to j. The optimal
transport problem becomes equivalent to:

min
σ∈Sn

n∑
i

Ciσ(i). (17)

One can directly see the computational downside; solving this with a simple algorithm
checking all permutations would run in O(n!)... which is clearly prohibitive. It is thus
important to enforce additional properties to devise effective approaches. In particular,
in this problem, if we suppose that Cij = h(xi−yj) where h is convex (e.g h(x) = x2),
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then one can prove that the permutation has to identically map the sorted sequences
(xi)i, (yi)i one to another; thus describing a procedure with much better complexity
O(n log n).

In the previous example, one can convince himself that the minimal cost M(µ, ν)
seems to provide a good notion of distance between measure. As it happens, this
is indeed the case, and one should not forget it from now on. Let us now give an
important existence theorem. It is hard to prove and requires to build many more
tools, but we give it here none the less, for clarity.

Theorem B.2. (Brenier Theorem) Assume X ,Y = Rd, c(x, y) = ∥x − y∥2 and µ
is dominated by the Lebesgue measure. Then, there exists a unique optimal map T
solving the OT problem, both in its Monge formulation and its Kantorovitch relaxation
(that we introduce later). It is characterized by being the unique gradient of a convex
function φ s.t T#µ = ∇φ#µ = ν.

Proof. Admitted. See [PC19b] or [Tho] Theorem 4.2; this is quite a long proof.
Requires study of the dual formulation; all the necessary tools are introduced later
though (e.g this theorem was the initial motivation for c-transforms).

Example B.3. (OT on 1D Gaussian) Assume µ = N (mµ, sµ), ν = N (mν , sν). One
can verify that

φ : x 7→ Σν

2Σµ

(x−mµ)
2 +mνx,

is convex and that with T = ∇φ we have T#µ = ν. Thus, Brenier theorem shows
that for the Euclidean cost, T is the unique optimal transport map, and the associated
Monge distance is

M(µ, ν) = (mµ −mν)
2 + (sµ − sν)

2.

One could not hope for a better distance formula between two Gaussians! And the
formula still holds for Dirac measures (sµ = sν = 0). This should be contrasted with
the KL geometry, where as we said KL(δx ∥ δy) = +∞ whenever x ̸= y, which is
very undesirable for a geometry between measures (does not metrize convergence in
distribution).

B.1.2 Kantorovitch Relaxation

Monge formulation is pretty limited. First, for discrete measures, the number of
support points in the destination measure must necessarily be smaller than the initial
one. Moreover, a transport map might not exist, as when sending a single Dirac
to two ones. Each time, the deterministic nature of the transportation makes the
method fall short. This motivates the following relaxation.

Definition 5. (Kantorovitch Formulation for Optimal Transport) Given µ ∈ P(X )
and ν ∈ P(Y), the Kantorovitch formulation for optimal transport consists in deter-
mining the following:

K(µ, ν) = inf
γ∈M(µ,ν)

∫
X×Y

c(x, y)dγ(x, y). (18)
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This is much more general, allowing for mass splitting for instance. The resulting
infimum is at most Monge distance. But as the Brenier theorem stated, the usual
continuous setting results in a degeneracy where they actually agree.
On a computational viewpoint, remark that when the cost function is convex, the
problem is convex (constraint is convex too) and becomes

inf
P1=M,PT 1=N

∑
1≤i,j≤n

CijPij,

which is solved by linear programming. But the reference network simplex algorithm
typically scales like O(n3 log n) ([BLO]).

Brenier theorem is interesting, but does not account for many contexts, such as
discrete distributions. The following theorem assures us the Kantorovitch formulation
is always well-defined.

Theorem B.4. (Existence of Transport Plan, [Tho] Proposition 1.5) Let µ, ν be
Radon measures on spaces X ,Y. Assume c : X × Y is lower semicontinuous. Then
there exists γ∗ such that K(µ, ν) is reached.

Proof. We will first prove that µ, ν is compact, and then extract a minimizing se-
quence; hypothesis on c will let us prove that limit in µ, ν indeed reaches the infimum.
First, µ⊗ ν ∈ M(µ, ν) ̸= ∅. µ, ν being Radon measures, they are inner regular. Take
K,L compact sets such that µ(K), ν(L) < ε/2; then for any γ ∈ M(µ, ν) we have

γ(X × Y \K × L) ≤ γ((X \K)× Y) + γ(X × (Y \ L)) = µ(K) + ν(L) ≤ ε,

which proves that µ, ν is tight; Prokhorov’s theorem ([Sch]) shows that the µ, ν is
thus relatively compact in the topology of convergence in distribution (its closure is
compact). We need to prove that M(µ, ν) is closed. Take a converging sequence
γn ∈ M(µ, ν) s.t it converges to γ. Take any bounded continuous function f , and
define f̂ : (x, y) 7→ f(x); as Eγn f̂(X, Y ) → Eγ f̂(X, Y ), we deduce∫

X
f(x)dµ(x) =

∫
X×Y

f(x)dγ(x, y) =

∫
X
f(x)dΠXγ(x).

It follows that ΠXγ = µ. Likewise, ΠY γ = ν and M(µ, ν) is indeed compact. Take
γn a minimizing sequence, by compacity just suppose it converges to γ. Then by the
Portmanteau theorem (Theorem 2.1 [Bil68]):

K(µ, ν) = lim
n→∞

Eγnc(X, Y ) ≥ Eγc(X, Y ) = K(µ, ν),

which ends the proof.

B.1.3 Metric Properties

OT defines a distance between measures. This is one of the main fact of the study
here and one of the main reasons people are interested in the theory, as it introduces a
convenient and natural geometry between measures. This property relies on a gluing
lemma we now prove.
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Lemma B.5. (Gluing Lemma, [PC19b]) Let µ, ν, η be probability measures on X ,Y ,Z.
Given γ ∈ M(µ, ν) and σ ∈ M(ν, η), there exists at least a tensor coupling measure
ξ such that:

ΠX,Y#ξ = γ, ΠY,Z#ξ = σ.

Proof. Essentially disintegration of measures

We can now construct the Wasserstein distance in a general setting of arbitrary dis-
tributions. Recall the tree axioms a distance d on some space X must verify:

• (Symmetry) d(x, y) = d(y, x)

• (Positive definite) d(x, y) ≥ 0 with equality iff x = y

• (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z)

Finally, we state the theorem.

Theorem B.6. (Wasserstein Distance, [PC19b]) Assume X = Y and that the cost
function can be written c(x, y) = d(x, y)p for some integer p and distance d on X .
Then define W (µ, ν)pc,p the p-Wasserstein distance as

W (µ, ν)pc,p = K(µ, ν) = inf
γ∈M(µ,ν)

E(X,Y )∼γ c(X, Y ). (19)

Remark that W (µ, ν)pc,p depends on the cost function and on p. When c(x, y) =
∥x− y∥p, we write Wc,p as Wp. As was implied, the p-Wasserstein distance is indeed
a distance on P(X ).

Proof. Clearly symmetric and positive. If W (µ, ν)c,p = 0, since d(x, x) = 0 we can
load a minimizing coupling on the diagonal ∆ = (x, x) and by positivity of the
quantities construct a a minimizing measure γ supported on ∆, denote by λ(x) the
associated measure on ∆. Then for any bounded continuous function f ,∫

f(x, y)dγ(x, y) =

∫
f(x, x)dλ(x),

so since γ ∈ M(µ, ν), actually µ = λ = ν.
For the triangle inequality; take optimal couplings γ ∈ M(µ, ρ), σ ∈ M(ρ, ν), and
glue them to obtain ξ. Define ρ = ΠX,Z#ξ. Write ∥f(X)∥α,p = (

∫
f(x)pdα(x))1/p.

Apply Minkowski inequality to end the proof:

Wp(µ, ν) ≤ ∥d(X,Z)∥ρ,p = ∥d(X,Z)∥ξ,p ≤ ∥d(X, Y ) + d(Y, Z)∥ξ,p
≤ ∥d(X, Y )∥ξ,p + ∥d(Y, Z)∥ξ,p ≤ ∥d(X, Y )∥γ,p + ∥d(Y, Z)∥σ,p
≤ Wp(µ, ρ) +Wp(ρ, ν).

Theorem B.7. (Wasserstein distance metrizes convergence in distribution) If X is
compact, µn ⇀ µ iff Wc,p(µn, µ) → 0. On a non-compact space, the distributions
µn, µ must also verify convergence of moments up to order p.

Proof. Admitted, needs duality.

So the distance constructed possesses the most natural properties we would think of.
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Immediate parametric estimation method Minimize θ 7→ W (αθ, β).
However, fast computation methods still lack. As we will see, the entropy regularized
setting holds much more promising properties.

B.2 Entropic Optimal Transport

B.2.1 Entropic Regularization

Definition 6. Entropic optimal transport
With cost function c between two measures µ, ν, add entropy term:

Kc,σ2(µ, ν) = inf
γ∈M(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) + σ2KL(γ ∥ µ ⊗ ν). (20)

Firstly, entropy smooths the optimal transport plan γσ2 :

Figure 10: EOT coupling between two Gaussians [Jan+20]

Remark how γσ2 −→ µ⊗ ν.

Theorem B.8. (Convergence with ε, [PC19a]) The unique solution γε of 20 con-
verges to the solution with maximal entropy within the set of optimal solutions of the
Kantorovitch problem:

γε
ε→0−−→ argmin

γ
{KL(γ ∥ µ⊗ ν) | γ ∈ M(µ, ν), Eγc(X, Y ) = K(µ, ν)}.

In particular

Kc,ε(µ, ν)
ε→0−−→ Kc(µ, ν).

Moreover

γε
ε→+∞−−−−→ µ⊗ ν.

Proof. Proposition 12 in [PC19b].

Remark This is not a distance now, and argminβ Wε(α, β) ̸= α. But the problem
is also of its own interest; i.e., without letting ε → 0. Numerous benefits result
from regularization. First, smoothing enables optimization methods (Sinkhorn).
Moreover, as we will see, it is entropic regularization that provides a bridge with
MLE, and thus good statistical properties, or robustness. Regularization can be seen
as an advantage rather than an approximation error.
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B.2.2 Sinkhorn Algorithm

We are in the setting of the regularized problem. The minimized objective is equal
to the projection on a Gibbs distribution. Computing that projection while keeping
the bistochasticity constraint on P (alternating between ΠxP = α and ΠxP = β)
constraints gives us a satisfying convergent algorithm, which is Sinkhorn Algorithm.
This is noted in [PC19a]. First notice that:

EP c(X, Y ) + εKL(P ∥ α⊗ β) = εKL(P ∥ K), (21)

where dK(x, y) = e−c(x,y)/εdαdβ (Gibbs kernel). Write

Pε = arg min
P∈α,β

KL(P ∥ K) := ΠKL
M(α,β)(K).

Then by defining

Cα = {P | ΠXP = α} and Cβ = {P | ΠY P = β},

one can use Bregman iterative projections to approximate a solution:

P l+1 = ΠKL
Cα (P l), P l+2 = ΠKL

Cβ (P l+1)

For finite distributions we have

ΠKL
Cα (P ) = diag(

α

P1m

)P and ΠKL
Cβ (P ) = Pdiag(

β

P T1n

).

These iterate are equivalent to

ul+1 =
α

Kvl
vl+1 =

β

KTul+1

Initialized with an arbitrary positive vector, say v = 1. This is proven to converge
and we have some useful bounds on the quantities involved.

Theorem B.9. (Theorem 3, 4, [PC19b]) This algorithm converges for the Hilbert
metric at linear rate.

In this context, measuring the error on the marginal constraints can be an effective
stopping criterion ([PC19b]).
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C Dual Formulation
First, the dual formulation to the optimization procedure of optimal transport is
essential to many proofs of its properties. We will provide what we feel is important
for a better understanding of the theory, and for the motivation behind its tools. More
importantly for us, this further leads us to the formulation of the semi-dual, which
admits exciting interpretations and eventually our path into robustness analysis.

C.1 Duality

C.1.1 General Setting for Duality

Consider the usual Lagragian duality setting. We wish to compute the following
problem:

min f0(x) s.t fi(x) ≤ 0, fj(x) = 0.

Define

J(x) =

{
f0(x) when fi(x) ≤ 0, fj(x) = 0

+∞ else

Then define:

L(x, λi, λj) = f0(x) + ⟨λi, fi(x)⟩+ ⟨λj, fj(x)⟩, λi ⪰ 0.

Thus L(x, λ) ≤ J(x) and J(x) = maxλ L(x, λ). We have the following primal and
dual problems:

p∗ = min
x

J(x) = min
x

max
λ

L(x, λ) (Primal)

d∗ = max
λ

min
x

L(x, λ) (Dual)

and we always have d∗ ≤ p∗. When there is equality, we say we have strong duality.

C.1.2 Kantorovich Dual

Theorem C.1. Designate by D(α, β) the dual to the Kantorovitch problem. Then

K(α, β) ≥ D(α, β) = max
f,g∈L1,c−f⊕g≥0

∫
X
f(x)dα +

∫
Y
g(y)dβ. (Kantorovich Dual)

Proof. Primal is

W c(α, β) = inf
P∈M(α,β)

EP (c(X, Y )).

Define

L(P, f, g) =

∫
X×Y

c(x, y)dP (x, y) +

∫
X
f(x)d(α− ΠXP ) +

∫
Y
g(y)d(β − ΠY P ).
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Then the dual problem is:

d∗ = max
f,g∈L1

min
P≥0

L(P, f, g)

= max
f,g∈L1

min
P≥0

∫
X
f(x)dα +

∫
Y
g(y)dβ +

∫
X×Y

c(x, y)− f(x)− g(y)dP (x, y)

But remark that

min
P≥0

∫
X×Y

c(x, y)− f(x)− g(y)dP (x, y) =

{
0 if c− f ⊕ g ≥ 0

−∞ else

This leads to the conclusion.

Theorem C.2. (Kantorovitch Strong Duality) Assume the cost function c is lower
semi-continuous. Then

K(µ, ν) = D(µ, ν), (22)

and the maximum is reached in the Dual problem.

Proof. Lemma 3.2,3.3, theorem 3.4, lemma 3.6 of [Tho].

C.2 Semi-Dual

Remember the dual formulation is

Dc(α, β) = sup
c−f⊕g≥0

∫
fdα+

∫
gdβ.

As we said, showing the existence of solutions to the dual problem is non-trivial
(Brenier Theorem B.2), and necessitates introducing another tool: the c-transform.
Even though we are not planning on proving the latter theorem, we need this concept
to get to the semi-dual formulation.

Keeping one function fixed, one can try to minimize with respect to the other. Define
the c-transform as:

∀y ∈ Y , f c(y) := inf
x∈X

c(x, y)− f(x). (23)

Thus for a fixed f , g = f c is a solution to the dual problem. As a side note a useful
property there is that c Lipschitz implies f c, gc Lipschitz, and this is important to
show Kantorovitch Strong Duality. However, one could have thought about design-
ing a maximization strategy alternating between (f, g) 7→ (f, f c) 7→ (f cc, f c) 7→ · · · .
However, f ccc = f c. This failure in the classical problem is one of the points where
the entropic regularization shows its magic; unlike the original Kantorovitch dual
formulation, the regularized problem is smooth and strictly convex. Not only all the
theorems about existence and strong duality still hold, but we recover even more;
among other things, the previous optimization strategy actually works, and is equiv-
alent to Sinkhorn algorithm.
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Consider the dual to the regularized optimal transport problem:

Theorem C.3. (Dual of EOT) The dual to the regularized version of the optimal
transport problem admits the following representation:

Dε(α, β) = sup
f,g

∫
fdα+

∫
gdβ − ε

∫
e−(c−f⊕g)/εdαdβ. (24)

Proof.

Dε(α, β) = sup
f,g

∫
fdα+

∫
gdβ + inf

P≥0

∫
c− f ⊕ g + ε log(

dP

dαdβ
) dP,

then just see that the minimum over P is reached at dP = e−(c(x,y)−f(x)−g(y))/εdαdβ
by studying the function φ(r) 7→ (c− f − g + ε log(r))r.

As proved in [PC19b], existence of functions reaching the maximum and strong duality
(Kε(α, β) = Dε(α, β)) still holds. This time, the c-transforms are as follow. Fix f ,
and see that on a point in the support of β, we look for the following supremum:

sup
g(y)

g(y)− εeg(y)/ε
∫
X
e(f(x)−c(x,y))/εdα(x).

Thus,

f c(y) = −ε log

∫
e(f(x)−c(x,y))/εdα(x).

Equivalently

gc(y) = −ε log

∫
e(g(y)−c(x,y))/εdβ(x).

As it happens, alternating c-transforms in the discrete case gives a dual Sinkhorn
algorithm, that can be adapted to recover its primal version, see [PC19b] Section 8.1,
or [CP18] after Corollary 1. Now we finally get to the most important result of this
section.

Theorem C.4. (Semi-Dual Formulation for EOT [Men]) Let ε ≥ 0. Then one has:

Kε(α, β) = Dε(α, β) = max
f

∫
fdα− ε

∫
log

∫
e(f(x)−c(x,y))/εdαdβ − ε. (25)

The maximum is reached.

Proof. The proof is contained in [CP18] Proposition 2. and [CP15]. Once the exis-
tence of a maximum is proved we can just plug-in the appropriate c-transform:

Dε(α, β) = max
f

∫
fdα+

∫
f cdβ − ε

∫
e(f(x)+fc(y)−c(x,y))/εdαdβ

= max
f

∫
fdα− ε

∫
log

∫
e(f(x)−c(x,y))/εdαdβ − ε.
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Let us continue to build on this semi-dual representation. Write

G(f, Y ) =

∫
fdα− ε log

∫
e(f(x)−c(x,y))/εdα,

such that

Dc,ε(α, β) = max
f

EY∼βG(f, Y ).

We now get to the final representation we are interested in. Remember our way into
parameter estimation is by solving the following projection type problem:

argmin
θ

Dc,ε(αθ, β).

Theorem C.5. (Parametric EOT Semi-Dual) Model the initial distribution α with
some parametrization θ ∈ Θ s.t dαθ = αθdα, denote by dαθ,f = ef

Eαθ
(ef )

dαθ its f -
tilting, let c(x, y) = c(x − y), and take Lε such that its density is dLε = e−c(x)/εdα.
Then the EOTE θEOT solves

θEOT = argmax
θ

min
f

KL(αθ ∥ αθ,f/ε) + EY∼β(logLε ∗ αθ,f/ε(Y )). (26)

Proof. See we can write

G(θ, f, Y ) =

∫
fdαθ − ε log

∫
e(f(x)−c(y−x))/εdαθ

= −ε

∫
log

dαθ

dαθ,f/ε

dαθ − ε logLε ∗ αθ,f/ε(Y ) + cst

= −ε
(
KL(αθ ∥ αθ,f/ε) + logLε ∗ αθ,f/ε(Y )

)
,

and θEOT solves argminθ Dc,ε(αθ, β). (Could redo all the calculations with no ε if c
is replaced by c/ε).

The Theorem C.5 uncovers an interesting (adversarial) estimator; the model tries to
make the data look implausible while tilting not too far away from a distribution of
the parametric family. As a final remark, as pointed out by [Men], we can do the
same calculations as in Theorem C.4 and C.5 with gc to obtain:

θEOT = argmax
θ

min
g

D(β ∥ βg/ε) + EX∼αθ
(logLε ∗ βg/ε(X)). (27)

However, the usual setting is to model the observations Y ∼ β, and thus the term
EX∼αθ

(logLε ∗ βg/ε(X)) is not the right framework, as usually we do not know/have
no proxy to the distribution of X. This approach cannot be very helpful.
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D Computing the Estimators: EM Algorithms
Numerically maximizing the objective function of an estimator can be very hard,
or impossible, for some statistical models. This is usually the case when the model
can be formulated in a simpler fashion by assuming the existence of latent variables
(unobserved variables); for instance, in a mixture model, they can indicate the spe-
cific mixture component a data point belongs. Expectation-Maximization (EM) type
algorithms are used to address this problem.

D.1 Classical EM (MLE)

Assume we are given a parametric statistical model which generates variables Xi, Zi,
where Xi is the observation and Zi the latent variable. Then the log-likelihood is

l(θ) =
∑
i

log pθ(xi) =
∑
i

log

∫
Z
pθ(xi|z)pθ(z)dz.

In the case of a finite mixture model, we have Z ∼
∑k

j=1 πjδj, so the log-likelihood
becomes

l(θ) =
n∑

i=1

log
k∑

j=1

πjpθ(xi|zj).

Notice how hard it is to solve, even numerically, as the log-likelihood is not convex.
The optimization problem would be easier to solve if, first, the latent variables had
been used implicitly to classify the observed data, and if second, the distribution of
the data conditionally to the latent variable allows easy optimization. Indeed, given
the latent variables, we have

l(θ, z) =
∑

log πzi +
∑

log pθ(xi|zi),

and the subset of parameters corresponding to each mixture components can be esti-
mated separately.
Let us come back to the general setting of non-necessarily mixture models. As we
would like to make use of the potential convenient computations had we known the
latent variable, the EM algorithm comes into play. Start with a guess θ0;

• (Expectation) Determine the distribution of the latent variables knowing θt, X.
To this end remark that

pθt(Z|X) ∝ pθt(X|Z)pθt(Z),
and the normalization constant lets us recover these values entirely. Then com-
pute

Q(θ|θt) = EZ∼pθt (·|X)(log pθ(X,Z))

=

∫
Z
l(θt, z)pθt(z|x)dz

=
n∑

i=1

∫
Z
l(θt, z, xi)pθt(z|xi)dz.
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• (Maximization) Find the parameter that maximizes this quantity

θt+1 = argmax
θ

F (θ|θt).

Let us give the simple example of a Gaussian Mixture Model.

Example D.1. (Gaussian Mixture Model) Consider X|Z = zj to be distributed as
N (µj,Σj). Start the EM algorithm with a guess θ0.

• (Expectation) Focus first on the conditional probability pθ(Z|X). See how

pθ(Z|X) =
∏n

i=1 pθ(Zi|Xi) ∝
∏n

i=1 πzip(Xi|Zi). Denote by pij the probability
that sample i comes from mixture j. Then

pij ∝ πjp(Xi|Zi = j).

This lets us finally compute the expectation step:

Q(θ|θt) =
n∑

i=1

k∑
j=1

l(θt, zi = j, xi)pθt(zi = j|X) =
n∑

i=1

k∑
j=1

pij(log πj + log p(xi|zi = j)).

• (Maximization) Define nj =
∑n

i=1 pij the expected number of observations be-
longing to mixture j. Q(θ|θt) is maximal for the following empirical distribution,
mean and covariance matrices:

π̂j =
nj

n
, µ̂j =

1

nj

n∑
i=1

pijxi, Σ̂j =
1

nj

n∑
i=1

pij(xi − µ̂j)(xi − µ̂j)
T . (28)

The total complexity of each iteration is O(nk).

Another example, that we use in our subsequent computations, for Sinkhorn EM.

Example D.2. (Symmetric Gaussian Mixture Model) Consider X|Z = zj to be dis-
tributed as N ((−1)jθ, 1), j = 0, 1.

• (Expectation) Compute

Q(θ|θt) =
n∑

i=1

pi0(log π0 − ∥xi − θ∥2) + pi1(log π1 − ∥xi + θ∥2).

• (Maximization) Q(θ|θt) is maximal for the following empirical distribution and
mean:

π̂j =

∑
i pij
n

, µ̂j =
1

n

n∑
i=1

(2xi − 1)pij. (29)

(Proof; simply use Cauchy-Schwarz and minimize a quadratic polynomial).
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Thus, starting from initial parameter θ0, one can iterate to obtain a sequence expected
to converge to a good approximation of the optimal parameter θ∗. We will now
prove that this algorithm produces a non-decreasing sequence of log-likelihoods, which
guarantees that the procedure converges to a local maximum.

Theorem D.3. Each step of the EM algorithm increases the log-likelihood:

l(θt) ≤ l(θt+1),

and strictly so whenever θt is not a local optima.

Proof. In [Bon], Section 4.

However, it is well-known that the EM algorithm does not converge to the true
maximum in general. One also has to be careful to eliminate degenerate solutions, for
instance where the algorithm might classify one and only point to a specific mixture
component. In general, the strategy only consists in re-running the algorithm multiple
times, from different seed points. One could design smart parameter initialization,
alike what is done in k-means++ for instance. For Gaussian Mixture Models, the
choice of initial value of the covariance matrix is critical too. Indeed, σ2 the typical
variance should be chosen with knowledge of the following equality:

1

n

n∑
i=1

∥xi − x∥2 = 1

n2

∑
i,j

∥xi − xj∥2

If the variance is too big compared to the typical square distance between points,
then the empirical distributions will tend to be uniform and the cluster centers will
converge to the center of mass x.

D.2 Maximization-Maximization Approach

Introduce the F-functional:

F (µ, θ) = EZ∼µlθ(Y | X)−KL(µ ∥ µX), (30)

where µX is the true mixing distribution of X. Computations in 2.1 show that
standard EM can be reformulated as:

• E-step: Let P t+1 = argmaxP EY∼µY
FY (P (·|Y ), θt).

• M-step: Let θt+1 = argmaxθ EY∼µY
FY (P

t+1(·|Y ), θ).

D.3 Sinkhorn EM (EOTE)

With the F-Functional, the Sinkhorn EM appears as a very straightforward readap-
tation of the EM algorithm. It suffices to slightly change the EM step;

• E-step: Let P t+1 = argmaxP∈µX ,µY EY∼µY
FY (P (·|Y ), θt).
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• M-step: Let θt+1 = argmaxθ EY∼µY
FY (P

t+1(·|Y ), θ).

Indeed as seen in 2.1 (mainly using Lemma 2.1), it is equivalent to:

• E-step: Let P t+1 = argminP∈µX ,µY EPgθt(X, Y ) +D(P ∥ µx ⊗ µY ) (Sinkhorn).

• M-step: Let θt+1 = argminθ EP t+1gθt(X, Y ).

And the sequence L(θt) is decreasing, strictly so whenever θt is not a stationary point
of L ([Men+20]).
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