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Abstract

In the context of computationally studying topological spaces, many al-
gebraic tools have proven effective both theoretically and practically.
Specifically, given a filtration of simplicial complexes, one can compute
relative and persistence homology to determine properties of the topo-
logical object at hand. Moreover, one can attach additional data to the
complex using (co)sheaves and adapt the relevant algebraic tools accord-
ingly. However, computations can involve linear algebra on huge spaces,
dimensions of which are linked to the number of manipulated simpli-
cies. Discrete Morse theory has been developed to tackle this issue of
huge practical importance, as it is able to drastically reduce the effec-
tive dimension of the linear spaces by removing most of the simplicies,
while computing the same algebraic objects (such as homology groups
and their corresponding maps). In this essay, we will work toward a gen-
eralization of discrete Morse theory in the context of cosheaves. The ul-
timate goal is to describe how to construct relative cosheaf homology on
filtrations of finite simplicial complexes, adapting discrete Morse theory
to this context. In particular we will underline how this simplifies com-
putation of the associated long exact sequence. As a final generalization,
we will work on longer filtrations and apply discrete Morse theory to
persistent cosheaf homology.
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1 Introduction

The theorems we will mention without proof are all properly introduced in the lecture
[Nan]. This work naturally builds on top of all the material introduced there. To make
the reader’s life easier, we have carefully made sure to use the same notations. Adapting
discrete Morse theory to the context of cosheaves has been largely inspired by the paper
[CGN15], but we take a somewhat different route, being closer to the spirit of the lecture
notes.

After a brief introduction of cosheaves over finite simplicial complexes, we will focus on
relative homology in Section 2. As relative homology works on a filtration of a simplicial
complex, we won’t explicitly talk about persistence until the final section, as the work is
very similar. Once relative homology will be adapted to the context of cosheaves, we will
work toward building discrete Morse theory for cosheaves in Section 3, thus providing a
recipe to drastically improve computations. In Section 4 we will implement discrete Morse
theory to relative cosheaf homology, and explicitly describe how the computation of maps
of the associated long exact sequence can be sped up. Finally we will do the same with
longer filtrations in Section 5 with persistent cosheaf homology.
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2 Cosheaves over Finite Simplicial Complexes

For the sake of the following presentation, define a filtration of three simplicial complexes
M ⊂ L ⊂ K.

2.1 Cosheaf

Let’s introduce the underlying object of all our subsequent work.
Definition 1. A cosheaf over a simplicial complex K is a covariant functor C : (K,≥) →
VectF. The vector spaces denoted by C(τ) are called costalks the linear maps C(τ ′ ≥ τ)
between them are called exclusion maps.

Please refer to [Nan] for a more thorough presentation of such an object. Its useful proper-
ties we don’t describe further have to do with its functoriality. Here are some straightfor-
ward example of cosheaves on a simplicial complex K:

• The zero cosheaf 0K which assigns the trivial vector space to every simplex. All
exclusion maps C(τ ′ ≥ τ) are zero.

• Given a simplex τ ∈ K, the skyscraper cosheaf Cτ . It assigns the trivial vector
space to every simplex except τ , for which C(τ) = F. All the exclusion maps are
zero except C(τ ≥ τ) = Id.

• The constant cosheaf FK , which assigns the one-dimensional costalk to every
simplex of K and the identity exclusion map to every face relations. We will see
that this simple cosheaf recovers the usual formulation of our standard algebraic
objects (chain complexes, homology groups etc.), which are thus special cases of
this encompassing theory.

Now, we naturally reformulate the usual algebraic objects in the theory of computational
algebraic topology, as introduced in [Nan], to accommodate for cosheaves. In particular,
every cosheaf C on K induces a chain complex

· · · −→ C2(K; C) ∂C
2−−→ C1(K; C) ∂C

1−−→ C0(K; C) ∂C
0−−→ 0

which gives rise to the homology of K with coefficients in C.
Definition 2. For each dimension k ≥ 0, the vector space of k-chains of K with C- coeffi-
cients is the product

Ck(K; C) =
∏

dim(τ)=k

C(τ)

of the costalks of C over all the k-dimensional simplicies of K.

Assume that the simplicies of K are ordered such that each simplex τ of dimension greater
than 1 has an i-th face τ−i. Write

[σ : τ ] =


+1 if σ = τ−i, i even
−1 if σ = τ−i, i odd
0 else

so that [σ : τ ] is the coefficient of σ in the simplicial boundary of τ . This lets us define the
boundary operator in the context of cosheaves.
Definition 3. For each k ≥ 0, the k-th boundary map of K with C-coefficients is the linear
map

∂C
k = Ck(K, C) −→ Ck−1(K, C)

Defined via the following block-action: for each pair of simplicies τ > σ with dim(τ) =
dim(σ) + 1 = k, the C(τ) −→ C(σ) component of ∂C

k is equal to

∂C
k

∣∣
σ,τ

= [σ : τ ] C(τ ≥ σ).

Block actions are zero elsewhere.
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As promised, we now prove that we have constructed a well-defined chain complex.
Theorem 2.1. (C•(K; C), ∂C

• ) forms a chain complex. In other words, ∂C
k−1 ◦ ∂C

k = 0.

Proof. It suffices to prove that for each k-simplex τ ′′ and (k-2) simplex τ the C(τ ′′) →
C(τ) block of this composite is the zero map. We compute

∂C
k−1 ◦ ∂C

k

∣∣
τ,τ ′′ =

∑
dim(τ ′)=k

∂C
k−1

∣∣
τ,τ ′ ◦ ∂C

k

∣∣
τ ′,τ ′′

=
∑

τ<τ ′<τ ′′

∂C
k−1

∣∣
τ,τ ′ ◦ ∂C

k

∣∣
τ ′,τ ′′

=
∑

τ<τ ′<τ ′′

[τ : τ ′] [τ ′ : τ ′′] C(τ ′ ≥ τ) ◦ C(τ ′′ ≥ τ ′)

=
∑

τ<τ ′<τ ′′

[τ : τ ′] [τ ′ : τ ′′] C(τ ′′ ≥ τ) by functoriality (associativity)

=

( ∑
τ<τ ′<τ ′′

[τ : τ ′] [τ ′ : τ ′′]

)
C(τ ′′ ≥ τ)

But
(∑

τ<τ ′<τ ′′ [τ : τ ′] [τ ′ : τ ′′]
)
= 0 because it is the coefficient of τ in the composite

∂K
k−1 ◦ ∂K

k (τ ′′), which is null, of course. This concludes the proof.

It is therefore straightforward to define homology groups in the context of cosheaves.
Definition 4. For each dimension k ≥ 0, the k-th homology group of K with coefficient in
C is the quotient vector space

Hk(K; C) = ker ∂C
k

img ∂C
k+1

It is all the more quite obvious how this cosheaf homology agrees with standard homol-
ogy whenever C is the constant cosheaf FK , since C(K;FK) = C(K;F) and there is
an equality of boundary operators ∂FK

• = ∂K
• , as can be inferred from their respective

definition.

2.2 Relative Cosheaf Homology

We will now direct our work so as to adapt relative homology to the context of cosheaves.
Again, in this regard, consider a filtration M ⊂ L ⊂ K. For ease of notation, omit the
superscript C in the boundary operator, which can be inferred implicitly anyway.

Task 1. Remember that we have Ck(K; C) =
∏

dim(τ)=k C(τ). Thus Ck(L; C) is a
normal subgroup of Ck(K; C). The k-chains of K relative to L with coefficient in C is
then well-defined object

Ck(K,L; C) = Ck(K; C)
Ck(L; C)

Moreover, the boundary operator on K is such that its restriction to L is the boundary
operator on L:

∂K
•
∣∣
L
= ∂L

•

This induces a well defined boundary operator ∂K,M
• on the chain C•(K,L; C). Remark

all the more that ∂K,M ◦ ∂K,M = 0. This proves the following;

Theorem 2.2. (C•(K,L; C), ∂K,L
• ) forms a chain complex.

Finally, we are able to define the associated relative cosheaf homology groups.
Definition 5. The relative cosheaf homology groups Hk(K,L; C) are defined to be the
homology groups of the chain complex (C•(K,L; C), ∂K,L

• ).
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Remark When C is the constant cosheaf FK , all the different objects, chain complexes
and boundary operators, fall back to their regular definition. Thus the relative cosheaf
homology groups Hk(K,L;FK) also become the standard cosheaf homology groups
Hk(K,L).

Task 2. The obvious inclusion map C•(L; C) → C•(K; C) induces, after taking the
quotient by C•(M ; C), the resulting inclusion map:

p• : C•(L,M ; C) → C•(K,M ; C)

From basic algebra theory we know that

C•(K,M ; C)
C•(L,M ; C)

∼ C•(K,L; C).

From this we naturally define the projection map

q• : C•(K,M ; C) −→ C•(K,L; C).

And of course since ker(q•) = im(p•) = C•(L,M ; C), the following short sequence is
exact:

0 −→ C•(L,M ; C) p•−−→ C•(K,M ; C) q•−−→ C•(K,L; C) −→ 0

We now prove that these maps are indeed chain maps (i.e they commute with the boundary
operator).
Theorem 2.3. p• is a chain map.

Proof. Take τ ∈ Ck(L; C). For convenience we will now omit the subscripts in our maps,
as they can be recovered implicitly anyway. Define πM : C•(L; C) → C•(L,M ; C) as the
projection in the quotient space. Then:

∂K,M ◦ p ◦ πM (τ) = ∂K,M ◦ πM (τ)

= πM ◦ ∂K(τ) by definition of the boundary on quotient space

= πM ◦ ∂L(τ) because ∂K
∣∣
L
= ∂L

= p ◦ πM ◦ ∂L(τ)

= p ◦ ∂L,M ◦ πM (τ)

Thus ∂K,M ◦ p = p ◦ ∂L,M and p is a chain map.

Theorem 2.4. q• is a chain map.

Proof. Take τ ∈ Ck(K; C). Define πM , πL the same way, such that q ◦ πM = πL. Then

∂K,L ◦ q ◦ πM (τ) = ∂K,L ◦ πL(τ)

= πL ◦ ∂K(τ)

= q ◦ πM ◦ ∂K(τ)

= q ◦ ∂K,M ◦ πM (τ)

Thus ∂K,L ◦ q = q ◦ ∂K,M and q is a chain map.

Again, when C is the constant sheaf FK and M is empty, it is straightforward to conclude
that we produce the usual homology short exact sequence for the pair (K,L), as the chain
groups and boundary operators are equal, and the subsequent machinery is the exact same;

0 −→ C•(L;F)
p•−−→ C•(K;F) q•−−→ C•(K,L;F) −→ 0
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3 Discrete Morse Theory

In this section we heavily draw from the work of [Nan] and [CGN15]. We refer the reader
to [Nan] for the definitions of partial matching, gradient path, acyclicity, critical elements,
Morse chain complex.

3.1 Compatibility with Filtration and Cosheaves

Task 3. For ease of notation write M ⊂ L ⊂ K as F1K ⊂ F2K ⊂ F3K

Definition 6. Σ is compatible with the filtration F•K whenever
∀k, (σ ◁ τ) ∈ Σ, σ ∈ FkK ⇔ τ ∈ FkK

As we will see, this is a fundamental requirement for our incoming work. Indeed, this
entails inclusion of associated Morse chain complexes.

Moreover we have one additional constraint to be satisfied in the context of cosheaves.
Definition 7. Σ is compatible with the cosheaf C if

∀(σ ◁ τ) ∈ Σ, C(τ ≥ σ) is invertible.

We will now see how these compatibilities come into play in (relative) cosheaf homology
with discrete Morse theory.

3.2 Discrete Morse Theory for Simplicial Cosheaf Homology

Before coming back to relative homology, let us focus on our regular simplicial cosheaf
homology. Computing homology classes and boundary maps from our chain complex is a
rather hard problem. As one could imagine, in a variety of problems, we don’t expect to
see a topological object appear in its minimal simplicial representation, but rather as a mess
of too many simplicies in the purpose of computing homology and related objects. Indeed
this is unfortunate since the linear algebra will involve huge dimensions. As explained
in [CGN15], which we quote, discrete Morse theory begins with the structure of a partial
matching on simplicial complex. A Morse chain complex may be constructed from this
data: its chain groups are freely generated by the critical simplicies (unmatched simplicies)
and the boundary operators may be derived from gradient paths. The fundamental result
is that the Morse chain complex so obtained is homologically equivalent to the original
simplicial complex.

Task 4. Generalization to the setting of cosheaf necessitates some additional definitions.
Let C be a cosheaf on a simplicial complex K. Let Σ be an acyclic partial matching,
compatible with the cosheaf C. Write

σ ◁ τ if σ < τ and dim(σ) + 1 = dim(τ).

Let γ = σ1 ◁ τ1 ▷ · · · ▷ σm ◁ τm be a gradient path of Σ. For convenience, write σγ = σ1

and τγ = τm for the first and last elements.
Definition 8. The weight of γ with respect to the cosheaf C is the linear map Cγ : C(σγ) →
C(τγ) given by

Cγ = (−C(τm ≥ σm))−1 ◦ · · · ◦ C(τ1 ≥ σ2) ◦ (−C(τ1 ≥ σ1))
−1.

Take σ, τ ∈ CΣ critical elements of K. The path γ is said to flow from τ to σ whenever
σγ ◁ τ and σ ◁ τσ .
Definition 9. Define a linear map CΣ on the critical elements CΣ of K, such that for
σ, τ ∈ CΣ, CΣ

τ≥σ : Cτ → Cσ is defined by

CΣ
τ≥σ = Cτ≥σ +

∑
γ

Cτγ≥σ ◦ Cγ ◦ C(τ ≥ σγ)

where we sum over all gradient paths flowing from τ to σ. The sum is null if no such path
exists.
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This naturally induces a boundary operator ∂C,Σ
• over the critical points CΣ of K, where

the block actions are equal to CΣ
τ≥σ .

Definition 10. The Morse data associated to Σ consists of the critical elements CΣ of K
arranged to form the following sequence

· · ·
∂C,Σ
3−−−→ CC,Σ

2

∂C,Σ
2−−−→ CC,Σ

1

∂C,Σ
1−−−→ CC,Σ

0 −→ 0

where CC,Σ
k =

∏
τ∈CΣ,dim(τ)=k

C(τ).

We are now prepared to prove the fundamental result in this essay.
Theorem 3.1. Let C be a cosheaf on a simplicial complex K. Let Σ be an acyclic partial
matching, compatible with the cosheaf C. Then the Morse data (CC,Σ

• , ∂C,Σ
• ) is a chain

complex. Moreover, there are isomorphisms

Hk(C
C
• , ∂

C
• ) = Hk(C

C,Σ
• , ∂C,Σ

• )

on homology for each dimension k.

The following subsection consists of the full proof, which goes on to show explicit chain
equivalence. As previously stated, if the set CΣ is much smaller than K, then it is vastly
faster to compute the homology on the chain complex (CC,Σ

• , ∂C,Σ
• ).

3.3 Isomorphism with the Morse Chain Complex

Let C be a cosheaf on a simplicial complex K. Let Σ be an acyclic partial matching,
compatible with the cosheaf C. We prove the previous theorem by an inductive argument
inspired by [CGN15]. We will iteratively work by removing one Σ-pair at a time from
K. The strategy consists in updating the chain groups and the boundary operators at each
stage, such that we recover the stated theorem at the final step. Informally, we will:

1. (Boundary Operator) Update the chain group and boundary operator from its pre-
vious state, in a way that is well defined at each stage. Show that the final boundary
operator is as expected in the Morse chain complex

2. (Chain Equivalence) Show that there is chain equivalence at each stage

Let us begin the proof.

Choose any σ◁τ ∈ Σ. Denote by K ′ = K \{σ, τ} the reduced set of simplicies. Similarly,
denote by Σ′ the set Σ \ (σ ◁ τ), which clearly remains an acyclic partial matching on K ′.

3.3.1 Boundary Operator

Definition 11. Denote by ∂
′C
• the boundary operator induced by the acyclic partial match-

ing σ ◁ τ :
∂′∣∣

x,y
= ∂

∣∣
x,y

− ∂
∣∣
x,τ

◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
σ,y

whenever x ◁ τ ▷ σ ◁ y. We say that we update the block by inserting σ ◁ τ . All other blocks
are left unchanged.
Theorem 3.2. Assume that the initial sequence (C•(K; C), ∂C

• ) is a chain complex. Then
the reduced sequence (C•(K

′; C), ∂C
•
′) is also a chain complex.

Proof. Take x, z ∈ K ′. For convenience, we remove the implicitly recoverable subscripts
of the boundary operator. Compute:

(∂′ ◦ ∂′)
∣∣
x,z

=
∑
y

∂′∣∣
x,y

◦ ∂′∣∣
y,z

=
∑
y

(∂
∣∣
x,y

− ∂
∣∣
x,τ

◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
σ,y

) ◦ (∂
∣∣
y,z

− ∂
∣∣
y,τ

◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
σ,z

).
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By linearity:

(∂′ ◦ ∂′)
∣∣
x,z

=
∑
y

(
∂
∣∣
x,y

◦ ∂
∣∣
y,z

)
−
∑
y

(
∂
∣∣
x,y

◦ ∂
∣∣
y,τ

)
◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
σ,z

)

− ∂
∣∣
x,τ

◦ ∂
∣∣−1

σ,τ
◦
∑
y

(
∂
∣∣
σ,y

◦ ∂
∣∣
y,z

)
+ ∂

∣∣
x,τ

◦ ∂
∣∣−1

σ,τ
◦
∑
y

(
∂
∣∣
σ,y

◦ ∂
∣∣
y,τ

)
◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
σ,z

And since ∂ ◦ ∂ = 0 each term in parenthesis is zero, and in the end

∂′ ◦ ∂′ = 0

Thus the sequence at hand is a chain complex irrespective of the actual step of iteration.

There are two issues to solve to continue the procedure. First, in order to continue these
successive iterations, it must be made sure that the boundary map is still invertible when
needed (that is, on the remaining elements of Σ′). Second, it is not clear why the claimed
formula for the final boundary map should hold after these simple updates. Let us immedi-
ately solve these.
Theorem 3.3. The updated boundary map ∂′ is still invertible on the set of critical elements
Σ′.

Proof. Take x◁y ∈ Σ′. Suppose, for contradiction, that ∂′
∣∣
x,y

−∂
∣∣
x,y

= −∂
∣∣
x,τ ′ ◦∂

∣∣−1

τ,τ ′ ◦
∂
∣∣
τ,y

̸= 0. Then ∂
∣∣
x,τ ′ , ∂

∣∣
τ,y

̸= 0 which would imply the existence of a cycle x◁τ ▷σ◁y▷x
in Σ, contradicting acyclicity. Thus ∂′

∣∣
x,y

= ∂
∣∣
x,y

= C(y ≥ x), which is invertible.

Solving the second problem is less straightforward. The easiest way is to show that, at each
stage, there is simply an equivalence of Morse data between the initial chain complex and
its reduced counterpart. To this end, it is needed to introduce a variant of the gradient path
weight, based on the boundary operator rather than directly on the cosheaf.
Definition 12. Let γ be a Σ-gradient path. The weight of γ with respect to the boundary
operator (at some stage of the iteration) is the linear map wγ : C(σγ) → C(τγ) given by

wγ = (−∂
∣∣
σm,τγ

)−1 ◦ · · · ◦ ∂
∣∣
σ2,τ1

◦ (−∂
∣∣
σγ ,τ1

)−1.

By the previous theorem, this is well-defined at any stage. We will naturally denote by w′
γ

the weight for γ′ a Σ′-gradient path in any corresponding subsequent stage as

w′
γ′ = (−∂′∣∣

σm,τγ′
)−1 ◦ · · · ◦ ∂′∣∣

σ2,τ1
◦ (−∂′∣∣

σγ′ ,τ1
)−1.

Remark that the weight of γ with respect to the initial boundary operator before any reduc-
tion step is the weight of γ with respect to the cosheaf C.

Theorem 3.4. The Morse data associated to Σ is the same as the Morse data associated
to Σ′:

(CΣ
• (K; C), ∂Σ

• ) = (CΣ′

• (K ′; C), ∂
′Σ′

• ).

In particular this proves that the iterations recover the Morse boundary operator ∂Σ
• at the

final step, as expected.

Proof. First, note that the critical elements of K and K ′ are the same. This implies equality
of chain groups

CΣ
• (K; C) = CΣ′

• (K ′; C).
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We now focus on the linear maps ∂Σ
• , ∂

′Σ′

• . Take x ◁ y in K. Denote by Gr(Σ, x, y) the set
of Σ-gradient paths flowing from x to y. Let us prove that

∂
∣∣
x,y

+
∑

γ∈Gr(Σ,x,y)

∂
∣∣
x,τγ

◦w(γ) ◦ ∂
∣∣
σγ ,y

= ∂′∣∣
x,y

+
∑

γ∈Gr(Σ′,x,y)

∂′∣∣
x,τγ

◦w′(γ) ◦ ∂′∣∣
σγ ,y

Take γ′ = x1 ◁ y1 ▷ · · · ◁ ym ∈ Gr(Σ′, x, y). There are two possibilities. Either

1. (σ ◁ τ) can be inserted into γ′ such that it forms a gradient path γ ∈ Σ:
∃!j s.t γ = x1 ◁ y1 ▷ · · · ◁ xj ▷ yj ◁ σ ▷ τ ◁ xj+1 ▷ · · · ◁ ym

By acyclicity of Σ, we know there can be at most one index j satisfying the above
equation. Then both paths γ, γ′ are Σ-gradient paths. Let us examine the associ-
ated terms in the above sum:

∂
∣∣
x,τγ

◦ w(γ) ◦ ∂
∣∣
σγ ,y

+ ∂
∣∣
x,τγ′

◦ w(γ′) ◦ ∂
∣∣
σγ′ ,y

Remark that ∂
∣∣
x,τγ

= ∂′
∣∣
x,τγ

, as otherwise we obtain a path γ ▷σ ◁τ ▷x violating

acyclicity of Σ. The same argument shows ∂
∣∣
x,σγ

= ∂′
∣∣
x,σγ

. As τγ′ = τγ and
σγ′ = σγ , the previous term can be rewritten

∂′∣∣
x,τγ

◦ (w(γ) + w(γ′)) ◦ ∂′∣∣
σγ ,y

But see how
w(γ′) + w(γ) = · · · ◦ (∂

∣∣
xj+1,yj

− ∂
∣∣
xj+1,τ

◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
τ,yj

) ◦ · · ·

= · · · ◦ ∂′∣∣
xj+1,yj

◦ · · ·

= w′(γ′)

And thus
∂
∣∣
x,τγ

◦ w(γ) ◦ ∂
∣∣
σγ ,y

+ ∂
∣∣
x,τγ′

◦ w(γ′) ◦ ∂
∣∣
σγ′ ,y

= ∂′∣∣
x,τγ′

◦ w′(γ′) ◦ ∂′∣∣
σγ′ ,y

2. There is no such index j where the removed pair might fit, and thus the Σ′-gradient
path γ′ is also a Σ-gradient path. This immediately shows that w(γ) = w′(γ′).
Actually, since γ′ flows from x to y, we must have ∂

∣∣
x,τγ′

= ∂′
∣∣
x,τγ′

and

∂
∣∣
σγ′ ,y

= ∂′
∣∣
σγ′ ,y

(there is no way to fit the removed pair between an inclusion of
contiguous simplicies). Thus

∂
∣∣
x,τγ′

◦ w(γ′) ◦ ∂
∣∣
σγ′ ,y

= ∂′∣∣
x,τγ′

◦ w′(γ′) ◦ ∂′∣∣
σγ′ ,y

Let us recollect these results to prove our theorem. Write

∂Σ
∣∣
x,y

= ∂
∣∣
x,y

+
∑

γ∈Gr(Σ,x,y)

∂
∣∣
x,τγ

◦ w(γ) ◦ ∂
∣∣
σγ ,y

= ∂
∣∣
x,y

− ∂
∣∣
x,τ

◦ ∂
∣∣−1

σ,τ
◦ ∂
∣∣
σ,y

+
∑

γ′∪(σ◁τ)∼γ∈Gr(Σ,x,y)

∂
∣∣
x,τγ

◦ w(γ) ◦ ∂
∣∣
σγ ,y

+ ∂
∣∣
x,τγ′

◦ w(γ′) ◦ ∂
∣∣
σγ′ ,y

+
∑

(σ◁τ) ̸⊂γ∈Gr(Σ,x,y)

∂
∣∣
x,τγ

◦ w(γ) ◦ ∂
∣∣
σγ ,y

= ∂′∣∣
x,y

+
∑

(σ◁τ)∪γ′∈Gr(Σ,x◁y)

∂′∣∣
x,τγ′

◦ w′(γ′) ◦ ∂′∣∣
σγ′ ,y

+
∑

(σ◁τ)∪γ′ ̸∈Gr(Σ,x,y)

∂′∣∣
x,τγ′

◦ w′(γ′) ◦ ∂′∣∣
σγ′ ,y

= ∂′∣∣
x,y

+
∑

γ′∈Gr(Σ′,x,y)

∂′∣∣
x,τγ′

◦ w′(γ′) ◦ ∂′∣∣
σγ′ ,y

= ∂
′,Σ′ ∣∣

x,y

which ends the proof.
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Corollary 3.4.1. Directly using Theorem 3.2 proves that the Morse data

(CΣ
• (K; C), ∂Σ

• )

and all its subsequent (equal) reductions actually form a chain complex. This entails the
existence of their associated Morse homology groups

HΣ
• (K; C)

And in particular H•(CΣ; C) = HΣ
• (K; C).

It remains to show that homology is preserved after each reduction step, thus obtaining

H•(K; C) = H•(CΣ; C) (= HΣ
• (K; C))

3.3.2 Chain Equivalence

We will now work to create quasi-isomorphisms of chain complexes between

(C•(K; C), ∂•) and (C•(K
′; C), ∂′

•)

Remember that at the final step of these iterations, we recover the Morse chain complex
(C•(CΣ; C), ∂Σ

• ) = (CΣ
• (K; C), ∂Σ

• ) associated to K.

Define the linear map Ψ• : C•(K; C) → C•(K
′; C) by the following block action

Ψ
∣∣
ω,α

=


−∂
∣∣
ω,τ

◦ ∂−1
∣∣
σ,τ

if α = σ

Id if α = ω

0 else

Similarly define Φ• : C•(K
′; C) → C•(K; C) by the following block action

Φ
∣∣
α,ω

=


−∂−1

∣∣
σ,τ

◦ ∂
∣∣
σ,ω

if α = τ

Id if α = ω

0 else

Theorem 3.5. Ψ• is a chain map.

Proof. We want to prove that
Ψ ◦ ∂ = ∂′ ◦Ψ

Take α ∈ C•(K; C) and ω ∈ C•(K
′; C). Again we will not bother with sub-

scripts/dimension. Let us study the block action of each side of the previous equation.
The left hand side becomes

Ψ ◦ ∂
∣∣
ω,α

=
∑
c∈K

Ψ
∣∣
ω,c

◦ ∂
∣∣
c,α

which is non zero for c = σ, ω. Thus

Ψ ◦ ∂
∣∣
ω,α

= ∂
∣∣
ω,α

− ∂
∣∣
ω,τ

◦ ∂−1
∣∣
σ,τ

◦ ∂
∣∣
σ,α

= ∂′∣∣
ω,α

Now the right hand side becomes

∂′ ◦Ψ
∣∣
b,α

=
∑
c∈K′

∂′∣∣
ω,c

◦Ψ
∣∣
c,α

which trivially equals ∂′
∣∣
ω,α

whenever α ̸= σ. When α = σ, the right hand side becomes:∑
c∈K′

∂′∣∣
ω,c

◦Ψ
∣∣
c,α

= −
∑
c∈K′

∂
∣∣
ω,c

◦ ∂
∣∣
c,τ

◦ ∂−1
∣∣
σ,τ

+
∑
c∈K′

∂
∣∣
ω,τ

◦ ∂−1
∣∣
σ,τ

◦ ∂
∣∣
σ,c

◦ ∂
∣∣
c,τ

◦ ∂−1
∣∣
σ,τ
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Since dim(c) + 1 ̸= dim(σ) or dim(c) + 1 ̸= dim(τ) , the second sum is zero. Moreover,
remember that ∂ is a valid boundary operator, thus ∂ ◦ ∂ = 0. This shows that

∂′ ◦Ψ
∣∣
ω,α

= −
∑
c∈K′

(
∂
∣∣
ω,c

◦ ∂
∣∣
c,τ

)
◦ ∂−1

∣∣
σ,τ

= ∂
∣∣
ω,σ

◦ ∂
∣∣
σ,τ

◦ ∂−1
∣∣
σ,τ

= ∂
∣∣
ω,σ

= ∂
∣∣
ω,α

and this concludes the proof.

The same arguments can be used for the other map Φ.
Theorem 3.6. Φ• is a chain map.

Proof. Use the same exact method and arguments as for Ψ•.

It is straightforward to verify that Ψ• ◦ Φ• is the identity map on C•(K
′; C). It remains to

construct a chain homotopy between Φ• ◦Ψ• and the identity on C•(K; C).
Theorem 3.7. The linear maps Θn : Cn(K; C) → Cn+1(K; C) defined by the block
action C(α) → C(β)

Θβ,α =

{
∂−1

∣∣
σ,τ

if α = σ, β = τ

0 else

constitute a chain homotopy between Ψ ◦ Φ and Id on C•(K; C). This results completes
our proof of Theorem 3.1

Proof. It is straightforward to verify that

(Id− (Θ ◦ ∂ + ∂ ◦Θ)) = (Ψ ◦ Φ) .

By definition of chain homotopy, this suffices to end the proof.
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4 Discrete Morse Theory for Relative Cosheaf Homology

4.1 Morse Relative Cosheaf Homology and its Long Exact Sequence

Let us come back to our original concern. All the work done until now will let us easily
define and justify a generalization of discrete Morse theory to relative homology. First,
notice that requiring Σ to be adapted to our filtration implies inclusion of their respective
Morse chain complex. Again, for simplicity, denote M ⊂ L ⊂ K by F1K ⊂ F2K ⊂ F3K

Theorem 4.1. Assume that Σ is adapted to the filtration (FkK) of simplicial complexes.
Then there is an inclusion of their respective Morse chain complexes

CΣ
• (FkK; C) CΣ

• (Fk+1K; C)

Proof. First, as the critical simplicies of FkK are a subset of the critical simplicies of
Fk+1K, the inclusion of chain groups is obviously well defined. Now it remains to show
that the inclusion map commutes with the Morse boundary operator. This is equivalent to
the following statement

∂
Σ,Fk+1K
•

∣∣
CΣ

• (FkK;C) = ∂ΣFkK
•

Recall that the definition of the Morse boundary operator only involves Σ-gradient paths
that flow from source simplex x to target simplex y:

∂
Σ,Fk+1K
•

∣∣
x,y

= ∂Σ,FkK
•

∣∣
x,y

+
∑
γ

∂Σ,FkK
•

∣∣
x,τγ

◦ wFkK
γ ◦ ∂Σ,FkK

•
∣∣
σγ,y

Since Σ is adapted to the filtration at hand, we know that any gradient path γ flowing be-
tween elements of x, y ∈ FkK must pass through elements of FkK. Thus wFk+1K(γ) only
contains boundary maps between elements of FkK. As described in the very beginning of
this essay, the boundary maps commute with inclusion, that is

∂
Σ,Fk+1K
•

∣∣
FkK

= ∂Σ,FkK
• .

which very clearly proves the desired result.

This property of inclusion of Morse chain complex leads us to the following quotient chain
complex.
Definition 13. Define the relative Morse chain complex to be(

CΣ
• (Fk+1K,FkK; C), ∂Σ,Fk+1K,FkK

•

)
where CΣ

• (Fk+1K,FkK; C) = CΣ
• (Fk+1K; C)
CΣ

• (FkK; C)
and ∂

Σ,Fk+1K,FkK
• is its induced bound-

ary operator, which is well-defined by the previous theorem.
Definition 14. Define the inclusion pΣ• and projection qΣ• operators in the exact same way
as we did for relative cosheaf homology. This makes the following sequence exact:

0 −→ CΣ
• (L,M ; C) pΣ

•−−→ CΣ
• (K,M ; C) qΣ•−−→ CΣ

• (K,L; C) −→ 0

Theorem 4.2. The inclusion and projection maps pΣ• , q
Σ
• are chain maps.

Proof. Same exact proof as in 2.3, since we only use properties of quotient spaces and their
associated maps.

We are almost at the end of our construction. We would like to connect the relative cosheaf
homology groups of the initial chain complexes to their Morse counterpart. To do this
we need to construct an ultimate object; the quasi-isomorphism between the two chain
complexes.
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Recall how we built our quasi-isomorphisms ΨFkK between the original and the Morse
chain complex. Consider some k′ < k. Consider a stage of the iterations where we have
selected some σ ◁ τ ∈ FkK \ Fk′K. When Σ is adapted to the filtration at hand, the
corresponding ΨFkK

σ,• is the identity map on the subspace corresponding to the simplicies of
Fk′K. Thus, the restriction of ΨFkK

• to Fk′K is equal to the quasi-isomorphism that would
have been built between the original chain complex and its Morse counterpart associated
to Fk′K :

ΨFkK
•

∣∣
Fk′K

= Ψ
Fk′K
•

We could also say that Ψ• commutes with inclusion. This justifies the following definition.
Definition 15. Define ΨFkK,Fk′K to be the induced quasi-isomorphism on the quotient
Morse chain complex:

ΨFkK,Fk′K : C•(FkK,Fk′K; C) −→ CΣ
• (FkK,Fk′K; C)

It is possible to prove these are indeed quasi-isomoprhism by the same arguments used
before, this time in quotient space.

This immediately leads to the following.
Theorem 4.3. The induced quasi-isomorphisms ΨFkK,Fk′K , k > k′, are such that the
following diagram commutes:

0 C•(L,M ; C) C•(K,M ; C) C•(K,L; C) 0

0 CΣ
• (L,M ; C) CΣ

• (K,M ; C) CΣ
• (K,L; C) 0

p•

ΨL,M
•

q•

ΨK,M
• ΨK,L

•

pΣ
• qΣ•

Proof. Same exact proof as in Theorem 2.3, since we only use properties of quotient spaces
and their associated maps (here, working with Ψ instead of the boundary operator).

Now we use the admitted result in the Mini-project guidance, which is called the naturality
of the connecting homomorphism. Let S• and SΣ

• be the connecting homomorphism of
our initial relative cosheaf chain complexes and their Morse counterpart, in the long exact
sequence given by the snake lemma. Our maps ΨFkK,Fk′K , being quasi-isomorphism, they
induce an isomorphism between the following long exact sequence of homology groups:

· · ·Hd(L,M ; C) Hd(K,M ; C) Hd(K,L; C) Hd−1(L,M ; C) · · ·

· · ·HΣ
d (L,M ; C) HΣ

d (K,M ; C) HΣ
d (K,L; C) HΣ

d−1(L,M ; C) · · ·

Hp

H
Ψ

L,M
d

Hq

H
Ψ

K,M
d

Sd

H
Ψ

K,L
d

H
Ψ

L,M
d−1

HpΣ HqΣ SΣ
d

where of course HΣ
• = H•. In the end, this construction lets us greatly accelerate the

computation of the connecting homomorphisms Sd : Hd(K,L; C) → Hd−1(L,M ; C),
since we now have

Sd = (Hd−1Ψ
L,M )−1 ◦ SΣ

d ◦HdΨ
K,L.

4.2 Computation Improvements

Remember that the construction of the homomorphisms Sd, S
Σ
d consists in linear algebra as

described in the construction of the zig-zag lemma. Algorithmic complexity for the opera-
tions needed, say computing matrix inverse or matrix null space (Gauss-Jordan elimination,
SVD), scale like

O(n3),

where n is the number of simplicies in K. When working with the Morse chain complex
CΣ

• , the effective number of simplicies used in the linear algebra is n′ the number of crit-
ical simplicies, which can be much lower. Let us give a slightly more precise complexity
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analysis. [All+19] describe an efficient algorithm to compute an acyclic partial matching
adapted to some filtration. The complexity analysis (see section 3.3) involves sorting faces
of all the elements of K; the complexity of the worst case scenario is upper bounded by

O(n2 log(n)).

Then, [CGN15] describes an algorithm, Scythe, to compute the Morse chain complex
from Σ an acyclic partial matching on K, adapted to a sheaf F . The work could be gener-
alized to cosheaves. The time complexity of the algorithm is O(npm̃d3) where

1. p = maxx∈X |{y ∈ K | x ◁ y}|
2. d = maxx∈X rankC(x)
3. mk is the number of critical elements of dimension k

4. m̃ =
∑

k m
2
k = O(n′2)

Thus the time complexity of Scythe is upper bounded by

O(nn′2pd3).

Then, the subsequent linear algebra is of much lower O(n′3) complexity. In total, this
is better than the initial O(n3) complexity; this explicitly shows the expected gains in
computation time. One can refer to the cited articles to make sure that the space complexity
is also lower than naive computations.
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5 Generalisation to Longer Filtrations: Persistent Cosheaf Homology

Task 5. Let us discuss the possible generalization when considering a larger filtration

F1K ⊂ F2K ⊂ · · · ⊂ · · ·FnK = K

The only reasonable direction that comes to mind is constructing persistent cosheaf homol-
ogy, similarly to the work of [Nan]. Let us adapt the machinery of discrete Morse theory
for persistent homology computation in the context of cosheaves. This will be a rather
straightforward generalization, considering all that has been done until now. We require
the same conditions for our acyclic partial matching Σ to be compatible with our filtra-
tion (see Definition 6). Theorem 4.1 shows there is therefore an inclusion of Morse chain

complexes CΣ
• (FkK; C) CΣ

• (Fk+1K; C)
ik• . We now use similar arguments as in

Theorem 8.15 of [Nan], proof of which we practically quote here.
Theorem 5.1. For any pair i < j and dimension k ≥ 0, there are isomoprhisms

PHi→jHk(F•K; C) ∼ PHi→jH
Σ
k (F•K; C)

of persistent homology groups. The barcodes of Hk(F•K; C) and HΣ
k (F•K; C) are thus

equal.

Proof. For any pair i < j and dimension k ≥ 0, the following diagrams of vector spaces
commute

Ck(FkK; C) Ck(Fk+1K; C)

CΣ
k (FkK; C) CΣ

k (Fk+1K; C)

Ψ
FkK

k Ψ
Fk+1K

k

Ck(FkK; C) Ck(Fk+1K; C)

CΣ
k (FkK; C) CΣ

k (Fk+1K; C)

Φ
FkK

k Φ
Fk+1K

k

Since Ψ,Φ form two halves of a chain homotopy equivalence, they induce isomoprhisms
on k-th homology for all k ≥ 0. Thus, we obtain a 0-interleaving between the two k-th ho-
mology persistence modules, which guarantees isomorphisms of their persistent homology
groups.

In the same fashion, this shows how computation of persistent cosheaf homology groups,
along with the inclusion maps corresponding to the corresponding filtration, can be consid-
erably sped up thanks to discrete Morse theory.

In conclusion, we have described a pretty comprehensive method to adapt relative and
persistent cosheaf homology to discrete Morse theory. Possible research that remain, in the
continuity of this work, can be in the direction of algorithms for building adapted acyclic
partial matching. This can consist of obtaining the best possible matching, eliminating
a maximum of simplicies, or in obtaining the fastest algorithms to produce interesting
matchings.
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