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ENHANCING LINKAGES - SPECTRAL GRAPH THEORY

Abstract. In this report we collect tools from spectral graph theory to devise new ways
of analyzing graphs of linked companies in the stock market. We do not modify the
initial graph and use it as the only source of information about relations between stocks.
Firstly we will focus on spectral embedding, which consists in using linear algebra to
assign a position in Euclidian space to the different companies, such that those tightly
related get close together. This embedding holds many interesting properties, which we
will discuss, and offers a convenient setting in order to subsequently apply any machine
learning algorithm. Secondly we will explore the notion of entropy for graphs. This will
be interesting to determine a classification of graphs, according to their inner structure,
and detect regime change over time. The setting for such a study is directed weighted
graphs, where weights represent the influence we believe company ¢ has on company j.
However most techniques described in the literature only focus on undirected graphs. Thus
we will provide all the mathematics and justifications for generalization to the directed
graph setting. Overall, the various notions, objects and algorithms will be introduced and
explained in depth, so the reader can learn and differentiate them, know how and when
they should be applied, and develop the necessary intuitions.

Keywords: Machine Learning, Graph Laplacian, Spectral Embedding, Graph Entropy,
Directed Weighted Graphs
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Introduction

In almost every scientific fields using empirical data, may it be biology, physics or social
sciences, one is interested in determining groups of elements displaying similar behaviour.
In finance, we often encounter what we call 'linkage graphs’, which represent influence
companies have on each other. Typically, the rate of return of linked stocks tend to show
significant correlation. Part [[| will summarize the context of our work. These graphs can
be constructed in many different ways and from many different datasets. However, study-
ing this plain graph object is rather difficult. Eventhough one can develop a systematic
approach to assess the performance of different linkages, building a proper theoretical
framework to understand their structure is important. It will let us visualize and compare
linkage graphs much more easily, with insights in what makes their specific properties.

Spectral theory of graphs is our way into these endeavours. This theory studies math-
ematical objects we can associate to a graph (e.g adjacency matrix, degree matrix, Lapla-
cian...) in the eyes of linear algebra to try to get results and insights on the inner structure
of such objects. For instance, we can get estimations of the connectedness of a graph
(Fiedler number, Cheeger’s inequality, centrality measures...), the heterogeneity of node
degrees (entropy), or natural embedding in the Euclidian space.

In our context, the interpretatiblity of the results makes this point of view interesting
and valuable. Contrary to other ML techniques, it is possible to attribute clear meanings
to the outputs, and determine what leads to observed behaviours.

Many different techniques exists. In this paper our main focus will be on :

e Embedding Study of the embeddings given by the graph Laplacian. Part [[I] will
introduce embeddings for undirected graphs, the different algorithms/Laplacian that
exist and generalization to directed graphs. In Part [[I]] we will get to a similar em-
bedding using a distance defined as ”commute time” between companies. Much more
intuitive, this will be a better approach to someone with background in mathematics
for finance. We will even make use of PCA. Finally in Part [[V]we will introduce the
tools available and the corresponding behaviours to look for in linkages. For instance
we will see that clustering or ”hub”-ness effects all materialize differently in these
embeddings and in their corresponding graph spectrum.

e Entropy This will be of interest to determine the stability of linkage graph structure
and detect regime change. We may also use it to classify graphs, or enable the
possiblity to determine high similarity between linkage types. Part [V] will discuss
entropy in details.

Initially, the stability of the embeddings was the main reason we were interested in such
a study : if a relevant structure were discovered in the linkage graph embedding (in terms
of market forecasting power), then we could expect that pattern to repeat in the future
and rely on its predictions.
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Part 1
Context - Quant Research

1 Squarepoint Capital

Squarepoint Capital is a hedge fund specializing in quantitative finance and systematic
trading. It invests money from its clients in financial markets, using different inventive
products and strategies so as to make profit no matter market trends. The goal is to un-
derstand price fluctuations in high, mid or low frequency through systematic/algorithmic
ways, anticipate them and place trades.

The company focuses on a collaborative approach, so as to develop shared infrastruc-
tures and knowledge, allowing more complex projects to be built without the pressure of
generating higher returns immediately.

2 Equity - Mid Frequency

I worked in the Equity - Mid Frequency team. The goal is to analyze the behaviour of
traditional stocks in a time scale ranging from a few hours to a few days.

The usual workflow is the following :

e Data Focus on a particular data set ; this could be coming from an external data
provider or from inside the company. In the end it is any way to collect information
to be used on a subset of stocks in the market

e Alpha/Signal Find a systematic strategy/set of rules with a clear and sound eco-
nomic interpretation to forecast returns of such and such stocks. Usually, this math-
ematically translates to an "alpha”. It basically means that we are able to predict
the price evolution of an asset on the market. When we have a situation when we
are very confident in our prediction and we want to act on it, we say we generate a
”signal”

e Backtest Thoroughly test this strategy on past data, to solidly statistically deter-
mine if that signal is relevant or not.

e Production Trade on it to aim to generate profit.

3 Analyzing Market

We will describe through a few simple concepts how we are analyzing and looking at data.
For the sake of simplicity, we will say that we are looking at the price of stocks at close,
day after day. Let’s write the value of the stock of a company ¢ on day t

si
Then the n-day future return from day ¢ of this stock is naturally defined to be

i
_ StJrn
RO i
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3.1 Hedged returns

As one may remark, stock markets are fluctuating along global trends, describing how
much investors are globally pouring in or out of this financial market. We want to hedge
ourselves against this behaviour. The simplest way to do that is to short an index future
moving along the stock market (e.g S&P 500) along with the desired stock. Let’s denote
by hedge the value of the underlying this hedge instrument is tracking. If the value at
time ¢ of hedge is hedge(t), then shorting the hedge instrument for one day will account
for the following returns:
hedge(t + 1)
"~ hedge(t)

Indeed we are "removing” the global market movement. If the market globally moves up,
we lose its corresponding rate of return, and inversely. The n-day future hedged return

then is: ,
; -« hedge(t +k + 1)
h’L = —
tn kE—o Ttk (Tt+k,1 hedge(t + k:) ) )

which is emulating the pnl of buying a stock on date t, rehedging every day dollar for
dollar with the hedge instrument, while never rebalancing the dollar value of held stock.
We maintain constant number of shares invested. It is clear on the formula how we remove
the global market movements: if the stock we are interested in beats the market even
when the market is plunging, then we are profitable.

Looking at hedged returns is one of the standard ways to assess the performance of
our strategies. In this report we won’t precisely describe how this is done, but this is good
to know to understand how data is interpreted.

See [BRR94] for a more precise description of simple models like CAPM (one risk
factor, the expected return of the market) and APT [GK94] (more solid multi factor
model, introducing notion of risk-return tradeoff and risk exposure profile).

3.2 GICS

The Global Industry Classification Standard (GICS) is a four-tiered, hierarchical industry
classification system :

GICS

11 SECTORS

24 INDUSTRY GROUPS

69 INDUSTRIES

158 SUB-INDUSTRIES

Figure 1: GICS hierarchy [MSC22]
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Companies are classified quantitatively and qualitatively. Each company is assigned
a single GICS classification at the Sub-Industry level according to its principal business
activity. This classification is used extensively to study stocks, as same category com-
panies often display similar behaviour. It is a first step into clustering companies. In
our subsequent work on the linkages, we will be careful not to replicate the information
contained in this classification. There would be no need to develop a complex theoretical
framework if the final use cases are just equivalent to looking at intra-gics relations.

3.3 Linkage Graphs

It seems natural that companies of the same sector, competitors, suppliers etc. will behave
relatively similarly on the stock market. These links could exist for long or short periods
of time. For instance, say some big game console is being released, with CPU chips
manufactured by Intel, and GPUs provided by AMD. Then we can expect these two
companies to behave similarly for some period of time. We can express these bonds in a
linkage graph, day after day. We will sometime simply refer to these graphs as linkages.
There are many different way to construct these graphs. The GICS is a good example of
such a linkage, where companies of each sub-industry could be interconnected in multiple
distinct complete graphs. There is already quite an extensive literature on the subject,
the curious reader can look at [TLMOS] for a more general linkage discussion, and example
of study leading to the construction of such a graph.

Usually, most of our linkages have the following structure :

e Directed They are directed graphs. We want to be able to model the situation
where one company behaviour influences another one more or less later in time;
sometimes it has more to do with causation than correlation.

e Sparse The graph is sparse, that is the set of edges is of relatively small cardinality.
The linkage graph is describing more of clear connections between some companies
than just being a dense similarity graph acting on the whole set of companies

Our work is going to focus on the study of these graphs. We try to answer the following
type of questions:

e Is it possible to determine that some links/companies are more important than
others?

e Is it possible to determine and discard ”unrelevant” links (as in we can predict they
won’t really be of importance)?

e What kind of quantitative measure can we build to analyze and compare linkage
graphs, between themselves or over time. Will this allow to identify regime change
in a specific linkage?
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Part 11
Spectral Graph Theory for Embedding

4 Elements of Graph Theory

We will denote graphs we are working on by G = (V, E), V being the set of vertices
(representing companies) and E C V x V the set of edges (representing links). To each
edge e = (v;,v;) is associated a weight w;; describing the strength of the linkage between
company ¢ and company j. Thus a useful representation of the graph is going to be its
adjacency matrix W:

If no edge exist between v; and v;, we have w;; = 0. Remark that for an undirected graph,
W is symmetric: for each edge from company i to company j of weight w;; there must
exist an edge entry in the opposite direction and of the same weight: w;; = wj;.

We define the outgoing degree of a vertex v; to be:
di =) wi,
J

which will be just called the degree of the vertex in the case of the undirected graph. We
then define the degree matrix to be the diagonal matrix of the degrees:

D = diag(d;).

Take A € V a subset of the nodes. As a shorthand we will define i € A and i €
{i / v; € A} to be equivalent. We say that G4 = (A, EN A x A) is the subgraph of G
induced by A. We denote by 14 = (14(v;)); € R™ the indicator vector of the subset A.
Moreover:

Al = #{i/vi € A} = 114 = || 14,
vol(A) =Y "d; =14D1,4 = | D14,
€A
So these are differently weighted measure of the subset ”size”. We say that A is connected

if there exists a path in G4 between any two vertices. For two subsets A, B C V', we define
the similarity between A, B to be:

W(A,B)= Y  wi=15Wla.
1€A,JEB

Remark that we do not require A and B to be disjoint. This value can thus measure the
intra-subset similarity of A with W (A, A) or the isolated-ness of A with W (A, A), where
A-V\ A
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5 Spectral Embedding - Undirected Graphs

For the whole section here, we will only focus on undirected graphs. They offer a very
convenient symmetry which simplifies the whole analysis.

5.1 Spectral Graph Theory

We recommend looking at [Lux07] for an excellent description of spectral embedding for
undirected graphs. While less thorough, [Bonl9| is also a good resource. It explores the
“energy” approach and in particular uses systems of n springs as an intuitive physicist
point of view.

We will now describe how we get to the graph embedding, its properties and the useful
interpretations we can get with this method.

5.1.1 Unnormalized Graph Laplacian

The unnormalized graph Lapacian matrix is defined as
L=D-W.

Remark that is is a real symmetric matrix. For the moment the Laplacian is introduced
through the lens of ’energy’. The reader more familiar with finance in mathematics may
prefer the alternative approach described in Part

Theorem 5.1. Laplacian as an energy operator
Take z € R™. This vector represents values assigned to each company. Then:

227 Lo = sz‘j(ﬂfz‘ — ;)%
ij

Proof. Remark that, by symmetry :
IL‘TLSL' = Z dlIL‘? — Z wijxixj = Z djl']Q — Z wijzni;vj.
i j J ]
Adding these and remembering that d; = > ; Wiz

20T Ly = Z dixg + Z djx? -2 Z Wi T = 2 Z wij(x? + x? — 2x;x5),

207 Lo = Zwij(wi —z;)%
ij
O

There are a lot of ways to interpret this equation. They are all going to be explained
throughout the study. The simplest one is the following : consider L to be an energy
operator acting on the graph. We say this because it is a Hermitian linear operator, so it
will admit a nice eigendecomposition adaped to this energy description. To any state of
the system/positions of the companies x € R™:

< z|L|lz >= 2 L.

Remark how the total energy is the sum of multiple contributions of harmonic oscillators.
This is modulated by the factors w;;; as this factor increases, we need the values z;, z; to

10
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be all the closer for the same energy level. The minimization of this value would intuitively
give a nice 1-d embedding where all the "related” companies get close together, and those
loosely connected in the graph far apart in the embedding. These intuitions will be made
more and more precise. For the moment let us understand this mathematical object more
precisely.

Corollary 5.1.1. L is symmetric and positive semi-definite. Its eigenvalues are
positives

Proof. All the weights w;; being positive it is clear that Vo € R", Lz >0 O

Theorem 5.2. Null space of L when (G is connected
Suppose G is a connected graph. Then the null space of L is of dimension 1 and is
spanned by the constant one vector 1.

Proof. Suppose x € R™ is in the null space of L. Then 2’ La = Zij wij (T — xj)2 =01is
equivalent to x; = x; when w;; # 0. Thus all the points in the same connected component
of the graph have the same value. Since the graph is connected x is a multiple of 1. The
reciprocal way is trivial. O

Null space of L, general case Suppose G is made of Gy, ..., G} disjoint connected
components. Reorder the nodes so the adjacency matrix and the Laplacian are block
diagonal:
Ly

Ly

Ly,

Then the eigendecomposition of L is the union of the egendecomposition of each of its
subcomponent Lj. In particular,

Corollary 5.2.1. Spectrum of L and Connected Components

The dimension of the null space of L is equal to k£ the number of distinct connected
components G 4,, ..., G4, in the graph. The nullspace is spanned by the indicator vectors
1A17' te 71Ak'

k

We continue to understand why we are interested in this object for clustering; in the
case of clusters that are perfectly isolated, the Laplacian is able to describe them perfectly.

5.1.2 Normalized Graph Laplacian

We mathematically introduce a close relative to the Laplacian, the normalized Laplacian.
From now on we will differentiate both formulation. We will compare their usage and
properties throughout the study. Mainly, they tackle similar but slightly different opti-
mization functions on the graph, so that depending on the situation, one is more suited
than the other. There are different variations of the normalized Laplacian in the literature.
The two most cited ones [Lux(7] are:

Lsym — D71/2LD71/2,

Lyw=D"'L.

11
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The symmetric normalized matrix Ly, is usually what people refer to when talking
about normalized Laplacian, and that is what we will do here. Remark that for x € R™:

Li Lj 2

227 Lyyma = - :

The points are weighted by the inverse of their relative importance in the graph, impor-
tance defined by their degree.

The random walk matrix L,,, (unsurprisingly) defines the transition matrix of a Markov
process on the graph, where the probability of transition between company i and company
J is proportional to w;;:

Wi

iJ z]- wij .

It may seem strange to define L,,, as given since it is not symmetric, while we emphasized
it was one of the main property we required of our matrices. However it still admits an
eigendecomposition similar to the other ones and all the different Laplacians are related
by the following equations :

L

Theorem 5.3. Relations between Laplacians

1. L <— Lgym.-

A is an eigenvalue of Ly, with eigenvector v if and only if w = D71/2y and X are
the solutions to the generalized eigenvalue problem

Lz = ADzx.

2. L +— L.

A is an eigenvalue of L,,, with eigenvector u if and only if they are the solutions to
the generalized eigenvalue problem

Lz = ADzx.

3. Lsym < Lyw.

A is an eigenvalue of Ly, with eigenvector u if and only if w = D712y and X are
an eigenpair of L,

Proof. 1. Take (A, u) eigenpair of Lgym,. Then
L(D™Y2y) = DY2 ) u = AD(D™Y/?u).

2. Same kind of argument

3. Same kind of argument
O

Moreover, we have the following properties in terms of distinct connected components:

Corollary 5.3.1. Spectrum of Ly,,, L, and Connected Components The dimen-
sion of the null space of Ly, Ly, is equal to k£ the number of distinct connected compo-

nents G 4,,---,G4, in the graph. Their nullspace is spanned by
® Lgym @ the indicator vectors (D1/21A1, e ,D1/21Ak).
e L,y : the indicator vectors (14,,---,14,), alike L.

12
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5.2 Embedding

We will tackle the description of spectral embedding borrowing physics terminology.

5.2.1 Unnormalized

As stated earlier, L can be seen as an energy operator acting on the graph. L being
symmetric, we can look at its eigendecomposition and deduce the different states (or
eigenvectors) associated with this operator:

L=UAUT, 2=U"a,

where U is the basis of eigenvectors, A the diagonal matrix of eigenvalues. The eigenvectors
(ug)r of L successively minimize the value

2.%'TL£L‘ = Zwij(l‘i - ZL‘j)Q,
ij
when taken in increasing eigenvalue order. By successively we mean each new eigenvector
is the minima of that function on the space orthogonal to the first eigenstates. This is
of course a one of linear algebra main results, but let us emphasize it once again with its
formal description. With Vect(x1,x2,...) the subspace spanned by the vectors xy, xo, ...,
we have

. T —
argmilycrn ||z||=1, zLVect(u1, - ug) L Lz = up41.

The (ug) act as discrete functions such that they are going from the smoothest to the
roughest variations between connected nodes. Since we are interested in geometrically
concentrating related nodes, we want minimum distance variations between them; thus
we look for the first eigenvectors of L.

Remark Keep in mind that the Laplacian helps us describe the quality of an embedding
in terms of similarity between nodes. In this process, we want to minimize the measure of
separatedness/energy it is encoding. This may seem counterintuitive because we are used
to looking at the highest eigenvalues when studying matrices (for instance PCA, where
we are trying to explain maximum variance), because that gives the best approximation
in L? norm. We will see a connection with traditional PCA in Section [9]

Why work with L rather than W ? A first element of response would be to see how
incorporating the degree information was necessary to get the perfect cluster description
in the case of distinct connected graphs. Working with the Laplacian captures best the
global structure of the graph. In the following sections, especially when describing the
commute time construction in [[IT}, it will become clear how global notion of distances are
described with this matrix, whereas this is not possible with the mere adjacency matrix.
Some deeper work, as can be found in [RHK21] and J[OLV14], specifically link the Laplacian
to more general embedding methods via Kernel PCA.

Anyway let us recall the main property again : important clusters and related nodes
will group together. Examining a bit further the eigendecomposition we see :

e The first k > 1 eigenvectors are indicators 14, of the distinct connected components
in our graph. The associated energy is 0 : this is a "perfect” inter-cluster separation
(BUT the intra-cluster points are all merged together in a single point)

13
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e Remark that we need k£ dimensions to describe these: the points of cluster £ will
have non null value on the k-th components, 0 elsewhere.

e Say for simplicity we have a connected graph (k = 1). First eigenvector wu; is
constant. Now the second one us gives us a non pathological description of the
nodes on a 1-d line. Remember we must have (and that is true of all subsequent
eigenvectors):

< up,up >=1Tuy = 0 and |Jug|| = 1.

So the positions it describes are centered and of unit variance. We obtained a
discriminatory way to look at points where closer ones are more tightly connected
on the graph, and inversely so.

Now we want to justify looking at k dimensions simultaneously. Everything works fine
with Euclidian distance and L? norm.

Theorem 5.4. k-d embedding ith X a matrix in My, ,, describing a RF embedding of
each node i, we have :
tr(XLXT) =) wijl| Xi — X,
/[:7‘7
Minimum reached for X the matrix of first k eigenvectors of L.

Thus we finally embbed our graph nodes in k-dimensions with:

T
U211 U292 . U2gp Uy
T
Uk+1,1 Uk+12 " Uk+ln Uk 11

We omit constant offset ul (we will consider our graphs to be connected from now on).

5.2.2 Normalized

There are two ways to obtain an embedding with the normalized Laplacian.

L, Shi and Malik. [SMO00]
Instead of solving the eigenproblem for L

Lu = \u.
We rather solve the generalized eigenproblem:
Lu = ADu.

Remark that we obtain the eigenvectors of the normalized Laplacian L,,,. Another way
to solve this eigenproblem is to find an eigenvector v of Ly, and set u = D~1/2y.

Lsym, Ng, Jordan, and Weiss [NJWO0I]

See [Lux07| for additional details. It is known as the normalized spectral clustering ac-
cording to Ng, Jordan, and Weiss ; its properties have not been explored in this study. It
computes the k first eigenvectors of Ly, call them (uy)g, and normalizes them as follows:

uij

\ >k “?k;

This methods empiricially performs poorly with our linkage graphs, with less stability in
its embedding day after day. See [Lux07] or look at section (10| for clearer details on why
that may be the case.

U5 =

14
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5.3 Connection to Network Theory

Initially, the algebraic study of graphs comes from relations between graph cut problems
and the Laplacian matrix. Finding clusters in a graph in the eyes of a network theorist has
more to do with finding specific partitions satisfying some lower or higher bound equations.
This subsection will tie together these points of views, and constitutes in fact the historic
introduction of spectral graph theory.

5.3.1 Relaxation of Graph Cut

Given a graph G with adjacency matrix W, the most direct way to construct a partition
of the graph is to solve the mincut problem. Take k the number of clusters we wish to
isolate. The mincut approach consists in finding a partition Ay, ..., Ay of G such that

k
> W(A;, 4

=1

cut(Ay, .., Ag) =

N

is minimized. We would like to find a partition such that edges between different groups
have low weights. Here however high intra cluster connections is not optimized. We would
like the subsets Aj,..., Ax to be reasonably large. Thus we work on a slightly different
formulation of that problem which aim to balance cluster size:

t(A;, A;
RatiOCut(Al, ceny Ak) — Z Cll(|14|)
. i
Cut(Ai,Zi)
NCut(Ay, ..., Ag) = _—
Both notions of size will relate to our two different Laplacian; unnormalized corresponds

to |A;] = ||1.4]|%, normalized to vol(A) = || DY/214]2.

Case k = 2 Let’s make these connections clear. Please refer to [Lux07] for full details.

A 15
RatioCut Write r = :A; = }1’4”. Define f to be the following vector
A

1
=rly — -1+
f rla SA

Then
fTLf = |V|RatioCut(A, A).

Additionaly we have f71 = 0. So our minimization can be rewritten

min fTLf, subject to fT1=0.
ACV

This is a discrete NP-hard optimization problem. However its most natural relaxation is

min fTLf, subject to ff1=0,
fERM

which boils down to finding the second eigenvector of L. The partition A is then deter-
mined by (1,>0);-

15
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vol(4) _ [ D14

NCut This time write r = vol(A) = ||D1/21AH.

Define f to be the following vector

1

Then
T Lymf = |V|-NCut(4, A).

Additionaly we have f7D'/21 = 0. So our minimization can be rewritten

T : T 1/2
IIAHCH‘}f Lgymf, subject to f°D 21 =0.

Again, the relaxation of this problem boils down to finding the second eigenvector of Lyy,.
Remember its first eigenvector is indeed D/21.

5.3.2 Cheeger Inequality

In 1970, Jeff Cheeger proved an inequality between the 'Cheeger’ isoperimetric constant,
and the first non null eigenvalue of the Laplacian operator in the context of Riemannian
manifold. This very influential idea inspired the analogous theory studied here. That is
how algebraic study of graphs, in the way it is done for clustering, was born.

If we adapt the terminology of differential geometry by viewing the graph as a dis-
cretization of a Riemannian manifold, then W (A, A) is a measure of the boundary of A,
and vol(A) is naturally the volume of A. We can define

B W(A,A)
ha(A) = min(vol(A), vol(A4))’

and we call
hg = mjn ha(A)

the Cheeger constant of the graph. The Cheeger inequality ([Chu97]) for graphs is the

following
2

2hGZA22h?G7

where \s is the smallest non null eigenvalue of the graph Laplacian. The Cheeger constant
can be seen as a measure of maximum ”bottleneck” of information diffusion in the graph.
For instance, it will govern the convergence rate of the Markov Chain induced by the
graph. It also quantitatively describes the quality of the best cut that can exist between
two clusters in that graph.

See Chung [Chu97] for an insightful generalisation on weighted undirected graph. The
generalization to directed graphs is also famously due to her in [Chu05]; she establishes
the exact same inequality after adapting some notions to the directed graph setting.

16
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5.4 Equivalent Physical Systems

5.4.1 Springs
0’z
ot
Imagine spring connecting each nodes, stiffness being equal to linkage weight. Imagine
the nodes being constrained to a single dimension (which changes nothing as we would
project the PDE on each spatial dimension). Positions are then described by a single
vector x € R™. We are trying to find configurations of x minimizing the total system
energy. We are thus naturally drawn to a study of eigenspaces.
Speaking of energy relates a lot to this interpretation. Energy here is the potential
energy of an harmonic oscillator. Remark that for free moving oscillator energy=eigenvalue
x frequency

=—Lz

5.4.2 Heat Diffusion

ox
Fri —Lz
Imagine nodes being given a temperature (described by x € R™), conductivity between
nodes given by linkage weight. Then we are studying the process of temperature diffusion
in this network. Faster the configuration tends to constant temperature, lowest its "heat’
bottleneck. Writing once again (u;); the eigenvectors of L, the dynamics of a diffusion
process give us:
8ui

uz(t) = ai(t)ui, 6t

(t) = —Lui(t).
Thus o/ (t)u; = —La(t)u; = —\;a(t)u; and
ui(t) = e itu;(0).

We could say that eigenvalues describe how well information is separated in the net-
work. Imagine two practically separated clusters : we have a conductivity bottleneck, and
then A9 value is low:
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5.5 An example

Here the technique is applied to a linkage graph constructed from the highest correlation
values of a selection of European stocks around 2011.

i)
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Node gics
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=
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20M

10M

Figure 3: 3D embedding, (Y, Z) plane

The companies have been colored by GICS subindustry. Eventhough the first few
dimensions seem to isolate same gics companies out of others (on the branches/cones), we
visually see how different sectors are effectively mixed closer to the dense center. Looking
a bit closer to this picture, one could see interesting added information over industry
grouping. For instance the following are close together :

e Sanofi, Bayer (pharmaceutical) and Air Liquide (Industrial gasses)

e Tenaris (steel pipes manufacturer), Scannia AB (Swedish heavy vehicles manufac-
turer), Aixtron (semi conductor). More generally, dense mix of manufacturers and
micro electronics (e.g STMicroelectronics) in some regions of space

e Lafarge, Holcim (merged in 2015), Saint Gobin, Nordea Bank

e Vestas Wind systems (wind turbine, energy-alternate), Petrofac (manufacturer, energy-
oil&gas)
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6 Spectral Embedding - Directed Graphs

Let us generalize our construction to directed graphs. Degree matrix and adjacency ma-
trix will be modified to naturally fit the generalized setting of directed graphs. The full
justification of such an object is contained in the work of Chung [Chu05]. Her work ties
together this definition with the isoperimetric inequalities one can obtain in the undirected
setting, the same inequalities that intially sparked our interest in the algebraic study of
graphs. The Cheeger inequality is once again established, thus reinforcing our confidence
in the method abilities in terms of clustering. This is different to other methods that just
consider the graph to be undirected, for instance by simply adding the weights w;; + wj;
(e.g trying to use the directed incidence matrix of the graph). One cannot obtain the
isoperimetric inequalities formulated in the directed setting this way.

The main difficulty is that the usual Laplacian, defined as L = D—W, is not symmetric
anymore. The equations crumble and the spectral properties related to clustering are lost.
The trick is to consider the linkage graph through the lens of Markov chains. Consider P
the transition matrix associated with the graph. Then the probability to go from node
to node j is
Wij
Pi==".

YN wi
We can also write P = D~'W.

® = diag(m): Define the new degree matrix Write xyp € R" any initial probability
distribution on nodes. Then :
T T
Tpyq =T, P
For the moment, suppose the walk converges. The final distribution on each node gives a
centrality score 7:
lim,z, =7 L =7Tp.

7 is the relative importance of each company in the graph : companies that are mentioned
a lot get a high score and thus their relative importance in the graph as a ”degree” as we

would have said in the undirected setting is high. Remark that 7 also satisfy the following
equation, equivalent to 7! = ! P:

Ty, = Z wiﬂr je
J
The term ”centrality” comes from this relation. Now lets define

¢ = diag(n).

This is our new degree matrix. In the undirected setting (w;; = wj;) we fall back to
® x D.

(Pagerank) Slight modification of P We supposed the random walk as defined pre-
viously always converges, and that a unique stationary measure existed on that directed
graph. Actually we must demand for our graph to be irreducible (there exist a path
between each and every node). Markov Chain theory then guarantees the existence and
uniqueness of such a measure.

A slight modification of P (Pagerank) is introduced, with a sound interpretation in
the context of financial markets. From each node :
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e With high probability «, jump to the nodes it is connected to (usually « =~ 0.99).

e With low probability 1 — a, randomly jump to any other node, with uniform distri-
bution.

It is a model of random influence that can exist between companies inside this linkage. This
slight modification makes the graph irreducible and guarantees existence and uniqueness
of 7.

A: define the new adjacency matrix Simply define

A

I
—

h
SN—
<

|

We introduced a natural symmetrisation of the linkage graph. Each linked pair is weighted
by both companies relative importance in the whole graph

L: define the new Laplacian matrix Our new Laplacian now is :
L=3&-A.

Remark the quadratic form it defines is very similar in structure to our initial Laplacian :

ITi/x = meij(xi — acj)Q.
ij

The embedding is once again obtained from the eigendecomposition of L. See [CTO7) for
thorough details.
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Part 111
Connection to Commute Time and
Metric Multidimensional Scaling

As stated in an introductory paragraph, this embedding method resembles PCA a lot. As
it happens a connection really exists; essentially, we are defining similarities between some
points and try to get the best representation of these relations in an Euclidian space of
low dimension. This is a well studied area of mathematics and these connections are going
to be made clear and precise.

A natural notion of distance on the graph will be constructed: commute time. Metric
multidimensional scaling will be our way into embedding and PCA will appear in this
context. The final embedding will be very similar to the traditional spectral embedding,
and during this whole section we will draw enlightening parallels between both methods.
This alternative approach is yet another explanation for how things work and why.

There are deeper connection to other areas of mathematics related to embeddings
method, especialy by the means of Kernel PCA. We will not dive into it, and we refer to
two interesting papers for the curious reader: [RHK21], [OLV14].

7 Commute Time Distance Embedding

Refer to [SEYDO04] for full proofs of the results here. Once again, interpret the graph as a
Markov chain, with transition matrix defined as

P=D"'w.

The idea is to group similar companies together. This time, by similarity we simply mean
that it is possible to travel fast between two nodes. Equivalently, we mean there needs
small average time to get from node i to j.

Initial Graph Embedding - 2D

. . /) "
z\\ / \I \ ﬁ/
\\ ‘i .

Figure 4: A graph and its desired embedding

While their linkage weight wi3 is small, we would like 1 and 3 to be close together
since they are tightly bound by the means of 2; there exists a fast path conecting 1 and 3.

Let us quantify this. Let T;; be the time needed by a random walk to get from ¢ to j.
Then we define the average first passing time to be

m(i, j) = E(Tij).
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Remark that this is not always symmetric, even in the context of undirected graph:

Figure 5: Assymetry of average first passing time

See how 2 is connected to the other cluster. This entails the inequality m(2,1) > m(1,2).
Thus we expand this to a more useful notion. Define the average commute time to be the
average time needed to go from ¢ to j and back again:

n(i, j) = m(i, j) +m(j, ).

Now this constitutes a natural symmetric distance between two companies. It can be
additionnally proven that this verifies the triangle inequality, and so constitutes a metric
distance. Looking at our first example, node 1 and 3 are now defined to be close together.

Connection to Laplacian Refer to [SEYDO04] for full proof. The connection with the
Laplacian is the following:

n(i, j) = Ui + 1 = 20,
Where LT = (l;;)w is the pseudo inverse of L. This is not an obvious result. It essentially
uses combinatorial properties of the graph. Thus, if we describe a company ¢ by a point
x; in Euclidian space (we’ll make it precise), we can see that this distance is derived from
a scalar product defined between points as:

< T, Tj >= lj]_

Once again it is clear how the Laplacian, rather than the adjacency matrix, holds the

right information about our graph. This matrix of ”similarity” between points does not

merely reflect the local property of each node but their interaction with the whole graph.

For instance one could have thought that the whole Laplacian embedding method was
1

equivalent to naively set the similarity between points as, say, < z;,z; >= —, and that

W
is a question the energy interpretation cannot really tackle. Anyway, we are once again

reassured.

8 Metric Multidimensional Scaling (MDS)

Now that distance has been defined between each companies, let us see how we get to
the embedding. The theory behind MDS only requires distances to work; please refer
to [Wil22] for a good explanation. Let us forget for a moment the connection with the
Laplacian matrix as we want the MDS approach to be self-contained.
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First, defining a metric distance (satisfying the triangle inequality, which is the case
here) between n points (z;); is enough to uniquely determine their positions in Eucli-
dan space, modulo rotations and translations. Additionally we require the points to be
centered:

i — 2]l = n(i,j), and Y a; =0,
7

which gives a unique description of position X € M,, ,, modulo rotations (line ¢ represents
embedding of company 7). Let us prove this in detail.

Proof. Say a R™ centered embedding of the companies exists, where z; is the position
in space of company i. Let X € M, , be the matrix of positions : line 7 represents
embedding of company i. Write K = XXT = (< ;,7; >);; the Gram matrix of scalar
products between each points. Then we must have:

n(i,5)° = o — 2;|* = Ki — 2K + Kj;.
With A = (n(i,5)?)ij; and N = (Kj;); = (||zi]|*)i the vector of norms;

A=N1T —2K +1NT.

]_T
But our data is centered. If we write P, = I, — m the projection on the orthogonal
space of 1, we must have:
P1=1"p =0,

PIAP, = 2P KP.
But K1 =17K = 0 (data is centered), so PLK = KP; = K and

1
K = —§P1AP1.

For the reciprocal direction, set K = —%PlAPL This gives a symmetric matrix which
we can verify is double centered and positive semi-definite (this is because the distance
verifies the triangle inequality). We write :

K=Urvt = xx7,

where

X = Urt/?

describes the centered R™ embedding of each companies. We can see here how any rotation
V €O, on X := XVT does not change the result. The Euclidian distance between each
company i, j is indeed the commute time. O

Once again remember that K = LT (as L also verifies 17LT = LT1 = 0).
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9 PCA
We set our embedding to be X = UT'/2 such that:
LT =Xxx"=vurv’.
So the covariance matrix of the data is
ga!
C=XT'X=r= . with 47 >--->7, =0.
Tn
It is diagonal; the embedding we obtained is already in its 'PCA optimized’ format, and
we can keep for each company positions the k first components. Now the relationship with
traditional spectral embedding is clear. L and its pseudo inverse L™ are closely related.
Mainly:
L=UAUT, L*=UTUT,
r=A"4
In the sense that :
1
— if A #0

I =diag(v, - ,v), A=diag(A1,---,\,) and vi =1 N )
0 otherwise

The eigenvectors described by U are the same.

So in the end we have the same embedding up to some scaling factor. In our project,
we are using the traditional Laplacian embedding, that is setting X = U rather than
X = UTY/2. This is the empiricially tested and robust way of looking at graphs. From
this section however we understand why it makes sense to look at such an object and such
a construction.

24



3A Internship Report

Part IV
Analysis and Usage of the Spectral
Embedding

At this stage we would like to understand how to effectively make use of the spectral
embedding. This mainly leads to ask the following questions: how many dimensions
should be retained for the final embedding? Which type of Laplacian should I use for the
embedding? How can I estimate the quality of the embedding? How can I compare two
graphs?

10 Eigengaps and Spectral Clustering

As it happens, the spectrum of the graph, that is the eigenvalues of the Lapacian in
increasing order, holds a lot of useful information. Some study has been done in this
area, and knowing to what extent the spectrum (or eigendecomposition of L) is unique to
a graph or a certain class of graph is a hard and broad question. In our context, there
may be two interesting use cases. First would be to use the spectrum to compare two
graphs. This eventually boils down to a signal analysis problem. Second is the study of
eigengaps. An eigengap is a sudden jump in the increasing eigenvalues; we will see it is a
good heuristic to determine the number k of dimensions to retain.

10.1 Examples and Graph spectrum

Let us take a look at some examples. These will build our intuition. In these examples,

we are going to display
1

A

as the spectrum of the graph (looking at eigenvalues of L™ in decreasing order). This
corresponds to the commute time approach. It is easier to visually see eigengaps in this
fashion. All the following remarks still stand when looking at the A in increasing order.

10.1.1 Clustering

Imagine two practically separated clusters:

Figure 6: 2-cluster graph, all links of weight approx. equal to 1
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Compute its 2D embedding:

1
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O
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Figure 7: 2D embedding of 2-cluster graph, all links of weight approx. equal to 1

The method will compactly group both clusters around two distant points in the first
dimension. However, we see that the second dimension separates nodes in a much less
interesting way. From this point on, the exact replication of the distances between points
is happening at a slow rate, and we have lost dissociative power. Let’s see the spectrum
of the graph (eigenvalues (y;); in decreasing order):

200
175 1
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IE)

50

254

00 25 50 75 100 125 150 175
Figure 8: Spectrum of 2-cluster graph
~1 value is high, but 2,73, - - - values are much lower. The eigengap at ¢ = 2 indicates

a clear 2-cluster structure. This phenomena naturally generalizes to k clusters. Lets take
a quick look for k = 4:

Figure 9: k-cluster graph
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N
o
Node degree

Figure 10: 3D embedding of k-cluster graph

Remark visually how for 4 clusters, three dimensions are enough to represent and separate
them. The spectrum is as much revealing
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Figure 11: Spectrum of k-cluster graph
There is a sharp drop after the third eigenvalue ~s.

10.1.2 Different types of network

When there is a clear custered center, the method is quite straght to the point. However,
the linkages at hand do not always display such a nice structure. If cluster presence can
be detected with a sharp drop/increase (either looking at 7/\), something closer to a
large scale network will show an opposite behaviour; a slow increase in the spectrum.
We call this behaviour ’hub-ness’ effect. Usually what happens is that a few companies
aggregate the majority of links (the typical large scale network is such that the distribution
of degrees follows a power law). The unnormalized Laplacian is the most sensitive to this
effect. Without any penalization for low degree nodes, it can tend to isolate unique points
out of the dense mesh of companies.
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Figure 12: Embedding of a proprietary linkage using the unnormalized Laplacian
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unnormalized normalized
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Figure 13: Spectrum of this linkage (unnormalized /normalized Laplacian)

The spectra displayed here show however how the normalized Laplacian can be a
good parade against this behaviour. By acting differently on low/high degree nodes, it is
able to separate companies effectively once again. See [Lux07]; an explanation is that the
asymptotically unnormalized Laplacian can act as a Dirac function. These results demand
to build much more complex tools, so we do not dive into it in this report. Again, for
interesting insights look at [OLV14] and [RHK21], which connect the whole technique to
Kernel PCA before looking at asymptotical operators.

10.2 Energy interpretation

Remember our primary equation (unnormalized Laplacian):

2zT Ly = Z wij(w; — x5)2
]
For each eigenstate:

An eigengap is then an energy jump. The associated eigenvector loses the ability to
effectively aggregate connected parts of the graph, or equivalently to separate loosely
connected ones.

The first eigengap can also indicate when all clusters have been indentified. Remember
in the perfect scenario of k disconnected components the k first eigenvalues are 0 (0 energy).
Then the eigenstate operate a dissociation in intra cluster points and we have an energy
jump.

Additionally, we can also interpret an energy plateau like degenerescence; there are
many dimensions to be filled by eigenvectors at the same energy level. Moreover we
observe that when eigenvalues increase slowly, linkage has more of a hub like structure
(like a large scale network).

10.3 Perturbation Theory

We are considering an embedding in k£ dimensions. Denote by L any Laplacian type of
some graph (Lgym, Lrw, L), and call V}, the subspace spanned by its k first eigenvectors.
Then for a small perturbation L of that Laplacian (adding, subtracting, changing edge
weights) and the corresponding V', we have:

T IL— L]
d Vk') Vk < N N
( ) Akt — M
where d is a distance between those subspaces (see [Lux07] for more details). Say we
have k perfect clusters in our graph. Then the eigenvectors are perfect indicators of the
clusters, and we have a high eigengap (sudden energy jump), so that the embedding given
by a small perturbation of that configuration will still be effective at locating the clusters.
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Eventhough only the contraposition is true, it is somewhat reasonable to assume the
reciprocal: the eigengap |Ag+1 — Ak| is a good measure of the effectiveness with which
the embedding is able to ”locate” some clusters if and when they exist, and the optimal
number of clusters to uncover/dimensions to use is exactly k. Large eigengap means high
stability of embedding in terms of perturbation. Remark that this is particularly the
case for the unnormalized Laplacian L and the normalized random walk L,.,. Indeed, for
the symmetric normalized Laplacian, consider a few distinct connected components. The
eigenvectors of Ly, are

DY?1,,.

This can introduce a lot of heterogeneity in the position values when the degrees are very
different. Any small perturbation is liable to scramble the cluster information out, and
the normalization step found in the algorithm of Ng, Jordan and Weiss does not correct
this problem.

10.4 Commute Time

Remember we were looking at I' = A~! during the commute time approach. Let us see
how we get to the relevancy of the eigengap through this method. We had as a covariance
matrix :

n
tr(C) = tr(XTX) = tr(I') = Z v = total variance.
i=1
But remark that

n(i, §)* = llws — 251> = (s — ;)" XX (e — €;) = (e; — €;)T Lt (es — ¢;),
ig)? = L + L - 2L,

So when we are looking at the distance induced by the k£ dimensional embedding we have

A

(i, §)? = llag — 25 1” = (e — ;)T Xk X3 (ei — €5) = (e — €5)" L(e; — ),
A(i,j)* = L + L), — 2L}

Where we can write LT = UT',U” where T, is zero on its diagonal from the k + 1-th
component on. Then [SEYD04] :

n
In—all> < >

i=k+1

The key to spectral embedding is that the first few dimensions not only introduce
the best explanation of variance, but also an excellent distortion of the graph in terms

of distance approximation. We are looking at the best description of overall information

1
flow, which gives best clusters in low dimensional representation. Sharp decrease in v = X

values indicate that we get excellent approximation in low dimensions. Once again we can
say that eigenvalues describe how well ”information” is separated in the network.
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11 Choosing Normalized or Unnormalized Laplacian

There are two Laplacian matrices we can work with:

e Unnormalized : L = D—W. We have been working with this one from the beginning.
Problem : when degrees are very heterogeneous, first eigenvectors tend to act as
Dirac functions.

e Normalized : L = D20 D12 = [ — D=1/2WD~1/2, Remember the associated

quadratic form:
2
T Li Zj
xL:r—Zwij< —> .
r Vd;  \/d;

We penalize low degrees vertex from getting too far from other points. This should
give a more balanced result. Moreover this operator is stable as the number of points
grow larger (see [Lux07], [OLVI14] and [RHK21]).

Another argument is the following. The indicator vectors when there is perfectly k
clusters are (14,) instead of (D'/?14,) for the unnormalized Laplacian. The perturbation
approach tend to favor the unnormalized Laplacian which is more robust to noise.

Let us present a final argument from network theory. We defined

i€A,jEB
One could work on the following optimizations when embedding the graph:

1. Minimizing the between cluster similarity, that is dissociating points from different
clusters.

Minimize W (4, A).

2. Maximizing within cluster similarity, that is embedding highly interconnected points
close to each other:
Maximize W (A, A) and W (4, A).

It can be proven ([Lux07]) that the unnormalized Laplacian optimizes (1), while the
normalized Laplacian optimizes simultaneously (1) and (2).

When trying to decide which Laplacian to use, one could look at their respective
spectrum and decide which embedding seems the more satisfying (for instance by favoring
steepest eigengap). Empirical results tend to favour the unnormalized version of the
Laplacian when working with our linkages.
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Part V
Entropy

We would like to find a way to distinguish different types of graph. As we have seen,
the graph spectrum can be used in such a way. Here we will see an alternative method
based on the study of the distribution of the node degrees. Studying degrees directly is
somewhat inconclusive, and instead we will focus on a more natural way of looking at
heterogeneity of degrees with entropy. We will first study characterizations of entropy in
the network, then try to extend that to the directed graph setting, and finally determine
a working technique.

12 Estrada Heteroegeneity

There are a few ways to compute unique quantities relating to entropy/heteroegeneity on
the graph. As a first reasonable measure, Estrada [Est10] proposed the following:

1 1
@)=Y (—=— —)2

Remark it can be rewritten with the normalized Laplacian:
p(G) =17 Lgyn1.
Writing N = |V|, we can bound this vaue between 0 and 1:

N p(G)
P& =N

The details are contained in [Est10]. A value of 0 is a regular graph (each node has
same degree), a value of 1 is a star graph, the most unbalanced graph. It can be used
to distinguish many types of graphs (small worlds, random graphs, scale free networks).
However it does not generalize well to directed graph. We could write

pdir(G) = 1Tf/sym17
where f/sym = o 12Lp1/2,

This one dimensional value is convenient for computations and it indeeds separates
the different graph structures at hand. It does not really describe any changes of regime
(for instance we could have seen a drop in heteroegeneity around march 2020; crisis, like
covid, usually make the graph structure more organized and less diverse. This is not the
case in our graphs). However, studying the equation and examining the terms in the sum
1Tﬁsym1 does not provide the insights we get from the next method.
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13 von Neumann Entropy

The key is to view the normalized Laplacian as a density matrix for the graph Hamiltonian
p now defined as
Lsym
N )
with N = |V, so that tr(p) = 1. Then the graph entropy is the von Neumann entropy:

H = —tr(plnp),

N
)\fym )\fym
H:—Z 5 In e

For which an approximation is

N sym sym
Y )\y
m=y AN
=1

1 1
H = NtT(LSym) - N

Now from this formulation it is possible to get to a development for directed graphs.
Simply use Chung formulation of the directed Laplacian that we normalize too:

tr(L3ym).

sym

L=0o"12[p"1/2

See [Hanl16] for full details. After some computation we get:

1 1
H=1- N 9N2 dout doutdm Z dg“td""t )

uvelR u,vEFo

where a directed edge (u,v) connects nodes of ingoing/outgoing degrees (di",d%%!) s

(di™, d9vt), and edges are partitioned into E = Ej U Ey with Ej unidirectional edges and
FE)5 bidirectional edges.

14 Index Histogram

Now the original idea is use the previous subsection to build a nice senseful histogram. To
the best of my knowledge this is an idea from [Hanl6]. We are going to classify edges in
bins defined by their nodes degree. Attribute to each edge a 4d vector:

e — (U,U) (dzn dout dm dout),

u v v

and compute the entropy contribution of each of these bins. The normalized local entropic
measure for each unidirectional edge is:

in
du

Iuv = : )
2|E||V|di (dgt)?

to which we add the contribution of bidirectional edges:

1
I, = :
w0 2BV ]dg g
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Finally, since the 4D histogram becomes very sparse for big graphs, we are going to
rank the degrees into m labels and attribute to the graph a 4D tensor M. Formally:

e For each node type u or v, compute the cumulative distribution function of the
in/out degrees

Fl'() = ) P(dy =)
0<i<z
We will call these functions Fgg{;e where node is the node type and dir the in/out
degree.

e Assign a label for each of the 4 components associated to an edge

di f ) pdir (adi J
qnt)rde - mln{j / Fné:le(dnzc:de) < E}

e Compute

1
Mgkt = o1 ( )3 (Tuo + L) -
q

gln 7qgout 7q’gzn7qgout):(l7]7k7l)7(u7’u) EE

e Remark it is sometimes possible to work on a 3D representation. If the graph is
strongly directed (edges mostly in F7), then describe each edge with

e = (u,v) > (di, do", d'™).

u > v

and compute

1
Mi' = St Iuv .

qdin qdout qdin qdout)=(i,5,k,l),(u,w)EE

Concatenate the elements of M to obtain a vector of dimension m* (m? in the case of
strongly directed graphs). This lets us compare the linkage graphs, for different linkage
types and over some period of time. Perform for instance perform a 3D PCA with all the
linkages considered month to month, over the last two years :

-2 0

2 2y ¢

ol

T

Figure 14: Index Histogram each month, 2020/2022. Each linkage type has its own color

As we can see, this method separates well the different linkage types (any clustering
algorithm would classify them correctly). We are also able to see changes in regime over
time for the same linkage type, when one of its vector gets located far from its usual
position in space.

This is also reassuring in the context of embedding. Even if we work statically (em-
bedding time ¢ to time ¢ without consideration for the previous states of the graph), we
expect to keep some structure, stability and continuity in the results we obtain.
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