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Abstract

Recent studies have demonstrated that Neural ODEs are intrinsically more robust
against adversarial attacks compared to vanilla DNNs, at comparable accuracy.
Inspired by dynamical system theory, we look at theoretical explanation trying to
support this case, and devise effective methods accordingly. Indeed, as the picture
gets more complex, initial justifications for robustness reveal unsatisfactory and
additional expressivity concerns arise. Finally, we look at the effectiveness of
stochastic noise regularization in regards to the last points.

1 Introduction

Recent research has bridged dynamical systems with neural networks as pioneered in [1]. Initial
work [16] suggest that Neural ODEs offer natural robustness against adversarial attacks at equal
accuracy. Many contradicting studies ([8], [16], [7]) expose theoretical limitations while readapting
the argument with Lyapunov type theorems. We’ll explore the SODEF [8] perspective. Moreover,
expressivity issues have been raised building on the very same arguments previously explaining
model strength.
Contribution We try to see if stochastic regularization can improve robustness and expressivity.
Effectiveness against adversarial robustness must be carefully questioned in light of [7]. Indeed most
architecture are tested with white-box attacks that may fail because of gradient masking caused by
the ODE solvers (adptive steps). We will attack vanilla/stochastic SODEF [8] accordingly to see if
the empirical claim of [7] holds. To our knowledge, this work is novel.

2 What are Neural ODEs ?

Neural ODEs [1] were inspired by the ResNet forward equation between hidden states:

zt+1 = zt + fθ,t(zt) (1)

which can be seen as Euler discretizations of a continuous transformation. Rewriting the equation in
bounded time [0, 1] gives zt+1/n = ht +

1
nfθ,t(zt) for which we obtain a natural continuous model

when taking n→ +∞:
dzt
dt

= fθ,t(zt) (2)

It is a parametrization of an ODE by a neural network. Thus loss L can be written

L(z(1)) = L

(
z(0) +

∫ 1

0

fθ,t(z(t))dt

)
= L (ODESolve(z(0), f, θ))

Efficient solvers and optimization methods are readily available. In particular, neural ODEs rather use
the adjoint method instead of backpropagation for model weight updates. We recommend reading
Appendix B of [1]. This adjoint method scales linearly with problem size, has low memory cost
(O(1)), and explicitly controls numerical error. Let us outline two immediate benefits.

(Memory efficiency) Not storing any intermediate quantities on the forward/backward pass allows us
to train models with constant memory cost as a function of depth, a major bottleneck of training deep
models. (Adaptive computation) Modern ODE solvers adapt their evaluation strategy to achieve a



desired level of accuracy, using a good proxy such as the number of function evaluations. As they
increase, the evaluations become closer in time, emulating a deeper residual network. This allows the
ODE solver to adaptively determine the depth needed for the model’s expressivity. After training, the
accuracy can be reduced for real-time or low-power applications.

3 Precise Integration Introduce Intrinsic Robustness ?

Empirical studies suggest that at comparable accuracy, neural ODEs show improved robustness. [16]
found that ODE networks with natural training are more robust against adversarial examples and
gaussian noise compared to conventional neural networks (while still being weaker than state-of-the-
art models obtained by adversarial training, like TRADES [9]). The initial intuition on these results
come from the following property of ODEs:

Theorem 1 (non-crossing of integral curves) Let z1, z2 be two solutions of ODE (2) with different
initial conditions z1(0) ̸= z2(0). If fθ,t is continuous in time t and globally Lipschitz in z then
z1(t) ̸= z2(t) for all t ≥ 0.

Consider a 1-D system and take z1, z2, with z1(0) < z2(0). Then ∀z s.t z1(0) < z(0) < z2(0), we
must have z1(1) < z(1) < z2(1). Thus all the possible perturbations in the initial condition of our
problem constrained in some ball can be uniformly bounded. However, a lemma can be deceiving:

Lemma 1 (Gronwall’s Lemma) Let U ⊂ Rd be an open set, f : U × [0, T ] 7→ Rd and z1, z2 :
[0, T ] 7→ U satisfy the ODE (2) parametrized by f . If f(·, t) is C Lipschitz for all t then

∥z1(t)− z2(t)∥ ≤ ∥z1(0)− z2(0)∥eCt (3)

And the bound can be reached (take f(x, t) = Cx. Then z(t) = z(0)eCt). This is an exponential
expansion from initial conditions, at a rate approximately the regularity of f . This certainly hinders
robustness. Approaches have been proposed to address the issue. [3] make use of optimal transport
and physics inspired measures to reduce instabilities. The method we’ll use takes another approach.

4 A More Complex Picture with Lyapunov Stability: SODEF

[8] takes another perspective. Lyapunov stability theorems let us build a framework where small
perturbations around inputs of interests actually converge to the same output with exponential
contraction of distance O(e−Ct). In this framework, we will focus on a classification tasks between
L classes, and on the time-invariant case : fθ,t = fθ. First, the Hartman-Grobman theorem [5]
introduces a nice setting to rather study the linearization of the dynamics:

Theorem 2 (Hartman-Grobman). Consider a dynamical system as described in (2) for some f ∈
C1(Rn,Rn). Suppose the map has a hyperbolic equilibrium state z∗, i.e f(z∗) = 0, and that ∆f(z∗)
has no eigenvalue with zero real part. Then there exists a neighbourhood Uz∗ , a homeomorphism
g : Uz∗ 7→ Rn s.t g(z∗) = 0 and in Uz∗ the flow of dz

dt (t) = f(z(t)) is topologically conjugate by
the map ẑ = g ◦ z to the flow of its linearization dẑ

dt (t) = ∆f(z∗)(ẑ(t)).

Now we define stability in the Lyapunov sense in linear time-invariant systems:

Theorem 3 (Lyapunov Stability) Define an ODE with constant matrix A by dẑ
dt (t) = A(ẑ(t)). Then

we have the following equivalences: 1) (Stability) Every finite initial state ẑ(0) excites a bounded
response iff all the eigenvalues of A have negative real part and those with zero real part are simple
roots of the minimal polynomial of A. 2) (Asymptotic stability) These states approach 0 as t→ +∞
iff the eigenvalues of A are strictly negative.

Thus Lyapunov stable equilibrium points are naturally robust to perturbations and act as noise filters.
In view of implementation we further introduce the following theorem:

Theorem 4 (Strictly Diagonally Dominant) Let A ∈ Mn,n(C) with negative diagonal elements.
Suppose that A is strictly diagonally dominant, i.e ∀i, |Aii| >

∑
j ̸=i |Aij |. Then A is non singular

and all its eigenvalues have strictly negative real parts (direct application of Gershgorin disks).
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Lyapunov-stable equilibrium points for different classes may however locate near each other. Each
stable neighborhood may be very small, leading to poor adversarial defense. Thus we would like to
map our L stable zones around our L classes far of each other. We thus introduce a final FC (Fully
Connected) layer represented by a matrix V ; its purpose is to map z(0) to vl if z(0) belongs to class l,
where V = (v1, ..., vl). We just have to assure that these vectors are sufficiently far from each other,
either by selecting V ∈ O(n) orthogonal, or by minimizing a(V ) = max

i ̸=j
vTi vj (see [8], corollary

1). Here the input x ∈ X is passed through a feature extractor hϕ to obtain the embedding z(0). A

Figure 1: SODEF (Stable neural ODE for deFense) Architecture [8]

neural ODE defined by fθ stabilizes that representation, obtaining z(T ) (usually T = 1). This is
passed through the FC layer, parametrized by V , to generate a prediction vector y. We introduce the
following objective function:

min
θ,ϕ,

Eµl(V
T z(T ), y)

s.t (1) Eµ∥fθ(z(0))∥ < ϵ, fθ ∈ C1

(2) Eµ∥∆fθ(z(0))ii∥ < 0

(3) Eµ[|∆fθ(z(0))ii| >
∑
j ̸=i

|∆fθ(z(0))ij |] > 0, ∀i

(4)

which translates exponential stability. Let’s analyze the behaviour of this approach.

Assumption 1. The embedded features z(0) admit conditional distribution µl for each class l. They
each admit a compact support denoted by El.
Assumption 2. The support of each class is pairwise disjoint: Ei ∩ Ej = ∅ if i ̸= j.

These are reasonable in the context of images for instance. Finally we introduce an existence theorems
that justifies our construction. The next lemma is the backbone of our main result.

Lemma 2 Given k distinct points zi and matrices Ai, there exists a function f ∈ C1 s.t f(zi) = 0
and ∆fθ(zi) = Ai

Theorem 5 Suppose the last assumptions. If µ is not a continuous uniform measure on El for each
l, then 1) the function space satisfying the constraints 1 to 3 is non empty for all ε > 0. 2) If the
restriction of µ to any open set O ⊂ El is not a continuous uniform measure, then there exists
functions in this space s.t each El contains at least one Lyapunov-stable point.

Moreover, fθ need only approximate a C1 function, which is in reach of deep learning architectures,
even for shallow networks [6]. The following papers offer similar approaches relying on the same
properties. The authors in [14] define only another objective function, with no constraints, that aim at
improving stability by implicitly bounding the eigenvalues largest real part, modulating a factor κ. In
[7], the approach is even more similar, as the authors introduce a 2-layer net for fθ that automatically
produces Lyapunov-stable dynamics; they implicitly use the Hartman-Grobman theorem.

5 Issues in Expressivity

Authors in [2] point out another problem with Neural ODEs, that once more show precise integration in
a bad light; the non crossing integral curves property is a flaw in expressivity. Write ψθ : z(0) 7→ z(T )
where z evolves according to the dynamics described by (2) with fθ. Then ψθ is a homeomorphism
(standard result in differential calculus). Thus the mapping preserves the topology of the input space.
In particular it cannot tear a connected region apart; this is exemplified in the following result. Let
0 < r1 < r2 < r3, gd ∈ C(Rd,R), d ≥ 1, s.t:{

g(x) = −1 if ∥x∥ ≤ r1
g(x) = 1 if r2 ≤ ∥x∥ ≤ r3
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Proposition Neural ODEs cannot represent gd.

This is a very insightful result. Comparing with ResNets, authors explain the discretization error
introduced by the Euler discretization makes it possible to learn g1, for instance.

Figure 2: [2] Path of a Neural ODE (solid lines) vs ResNet approximation (dashed lines) for g1

This is still evidence for limitations of the Resnet architecture too, as the occasional path crossing is
unlikely and fortunate. To alleviate this problem, the original authors introduce a simple solution that
consists in lifting points to additional dimensions, thus instead solving

d

dt

(
z(t)
a(t)

)
= fθ,t

(
z(t)
a(t)

)
,

(
z(0)
a(0)

)
=

(
z(0)
0

)
(5)

This solution works well for the use cases presented by [2], and shows better accuracy and general-
ization at lower computational cost, presumably because the learned flow is simpler and smoother.

6 Stochastic Noise for Expressivity and Stability: From ODE to SDE

Rather than augmentation, we propose an easy drop-in approach to implement. The mainstream deep
learning literature [9] frequently uses stochasticity as a regularizer. A neural SDE may likewise be
treated as a regularised neural ODE, as is introduced in [10]. Instead of (2), describe the dynamics by

dzt = fθ,t(zt)dt+Gω,t(zt)dWt (6)

where Wt is a standard Wiener process (see [13] for a refresher on stochastic calculus). This is very
simple to implement as SDESolver for neural SDEs are readily available. As long as f and G satisfy
some very generic regularity conditions (Lipschitz-ity), which we can assume they will, a unique
stable solution exists. Moreover, there exists a reformulation of Lyapunov stability in this setting:

Definition 1 (Lyapunov stability of SDE) The solution of z as defined in (6) is a.s exponentially
stable if lim supt→∞

1
t log ∥zt∥ < 0 a.s for all z(0).

Theorem 6 (CaseGω,t(zt) = σzt) [10] if fθ,t isL-Lipschitz then (6) has a unique solution satisfying
lim supt→∞

1
t log ∥zt∥ ≤ −(σ

2

2 − L) a.s for any z(0).

It can be nice to think about the geometric Brownian motion, which corresponds to the latter case,
while further assuming fθ,t(zt) = λzt. Then zt = exp((λ − σ2/2)t + Wt), and the result is
intuitive. Thus, increasing the diffusion coefficient brings balance between exponential stability and
effectiveness of the model, as it increases information loss. We additionally conjecture that Brownian
noise has the ability to violate the non crossing property and thus further increase expressivity.

Replicating Dropout [10] determines that the best model for our diffusion G is a replication of
dropout ([15]). Let’s look at ResNet using dropout. Nodes are dropped iid with probability 1− p :

zt+1 = zt + fθn(zn)⊙
γn
p

= zt + fθn(zn) + fθn(zn)⊙ (
γn
p

− I) (7)

where γn
iid∼ B(p). We divide by p to obtain a unit expectation. Write B = (γn

p − I). See how
E(B) = 0, Var(B) = 1−p

p . Thus equating the first two moments we obtain a good approximation by
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setting B ∼
√

1−p
p N (0, 1). Combining with (7), the SDE with dropout becomes:

dzt = fθ,t(zt)dt+

√
1− p

p
fθ,t(zt)dWt (8)

Interestingly, the apparition of an SDE in the Resnet equation need not require dropout or even a
probabilistic variable; the insightful work of [12] shows that Resnets initialized with iid parameters
have a non-trivial large depth regime only when following SDE dynamics.

7 Experiment: Does Stochastic Noise Improve SODEF Stable Solutions ?

In light of our study, we want to see if introducing stochastic noise can improve accuracy or
robustness. We use the same setup as the experiment on MNIST in [8] (implementing stochasticity
using torchsde): network = 8 layers pre-trained ResNet, 512x64 FC layer, trainable 64x64 SODEF,
64x10 FC layer with orthogonal matrix V ; optimizer=Adam with batch size 128 and learning rate
0.001; adjoint method for the ODE and adjoint_reversible_heun method for the SDE with fixed step
size and integration time T = 10, adversarial = L2 PGD ([11]) and gradient free SGSA ([4]) with
ε = 0.5. We train only SODEF, the whole network, and only SODEF again. We denote SODEF by
SODEFp, p = 1, 0.99, 0.9, 0.75 being the equivalent dropout rate as defined in (8) (p = 1 being
the usual SODEF). We train each SODEFp initializing at fθ corresponding to SODEF1 on a total
integration time of T = 10, for increased stability. After training, the eigenvalues of the gradient of
fθ for SODEF and SODEF0.9 are examined on the same 100 training points chosen uniformly at
random.

p Clean PGD SPSA

1 96.2 45.2 40.5
0.99 97.0 46.0 40.1
0.9 98.5 51.2 49.4

0.75 89.1 30.0 35.8

Model performance (accuracy)

∆fθ eigenvalues real part distribution on training points

Stochastic noise can improve the expressivity of the network, as demonstrated by the increased
accuracy (p = 0.9). The distribution of real parts of ∆fθ eigenvalues suggests that stochasticity
has smoothed the function and reduced high expansion factors (Re(λ) > 0), consistent with the
Lyapunov stability theorem. However, this comes at the expense of stability factors (Re(λ) < 0), as
stable zones are more easily escaped by the Wiener process. This supports the idea of integral flow
crossing, which in turn supports expressivity. Furthermore, the model demonstrates robustness to
adversarial attacks, even for black-box methods (even though integration time has to be increased to
T ≥ 5), suggesting that robustness is not a fluke, as was suggested in previous research (e.g., [7]).

8 Conclusion

Empirical results and selected theorems suggest that the structure of ODEs may offer robustness
guarantees, and that the concurrent expressivity loss can be effectively addressed through the use of
stochastic regularization. Recent studies such as [12] have also recognized the natural occurrence
of SDEs in conventional deep learning settings, further justifying their appeal. However, it can be
challenging to obtain significant results and effective methods using ODEs, as they are typically
slower [9] and less effective than other techniques such as TRADES. Additionally, the current
theoretical framework for ODEs is lacking, such as the limitations of Lyapunov-type theorems and
the breakdown of existence theorems when considering absolutely continuous measures [8], which
is more than undesirable (one could think of the angle of a face in image data). Further empirical
studies on other datasets and data distributions, as well as the exploration of stochastic regularization,
are necessary to fully understand the potential of neural ODEs.
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